cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A382614 Expansion of 1/(1 - x*(1 + x)^3)^3.

Original entry on oeis.org

1, 3, 15, 55, 198, 681, 2263, 7341, 23331, 72928, 224814, 684882, 2065346, 6173466, 18310212, 53935350, 157904130, 459755694, 1332010954, 3841812480, 11035346151, 31579747613, 90061069065, 256028590665, 725715896698, 2051465107719, 5784472106577, 16271956316851
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Column k=3 of A362125.
Cf. A382615.

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + x)^3)^3; seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 02 2025
  • Mathematica
    Table[Sum[Binomial[k+2,2]*Binomial[3*k,n-k],{k,0,n}],{n,0,27}] (* Vincenzo Librandi, Apr 02 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(3*k, n-k));
    

Formula

a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(3*k,n-k).
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3) - 33*a(n-4) - 24*a(n-5) + 39*a(n-6) + 108*a(n-7) + 123*a(n-8) + 84*a(n-9) + 36*a(n-10) + 9*a(n-11) + a(n-12).
G.f.: -1/(x^4+3*x^3+3x^2+x-1)^3. - Vincenzo Librandi, Apr 02 2025

A362126 Expansion of 1/(1 - x*(1+x)^2)^2.

Original entry on oeis.org

1, 2, 7, 18, 47, 118, 290, 702, 1677, 3966, 9300, 21654, 50116, 115388, 264475, 603792, 1373621, 3115222, 7045205, 15892794, 35769390, 80337144, 180091131, 403002108, 900370600, 2008572044, 4474586920, 9955434456, 22123162421, 49107537598, 108891513251
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2023

Keywords

Crossrefs

Column k=2 of A362125.

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x*(1+x)^2)^2)

Formula

a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3) - 6*a(n-4) - 4*a(n-5) - a(n-6) for n > 5.
a(n) = Sum_{k=0..n} (-1)^k * binomial(-2,k) * binomial(2*k,n-k) = Sum_{k=0..n} (k+1) * binomial(2*k,n-k).

A381425 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of (1 + x/(1-x)^k)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 1, 0, 1, 4, 12, 10, 1, 0, 1, 5, 22, 37, 18, 1, 0, 1, 6, 35, 92, 102, 30, 1, 0, 1, 7, 51, 185, 345, 258, 47, 1, 0, 1, 8, 70, 326, 880, 1188, 606, 70, 1, 0, 1, 9, 92, 525, 1881, 3851, 3796, 1335, 100, 1, 0, 1, 10, 117, 792, 3563, 10002, 15655, 11364, 2781, 138, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2025

Keywords

Examples

			Square array begins:
  1, 1,  1,   1,    1,     1,     1, ...
  0, 1,  2,   3,    4,     5,     6, ...
  0, 1,  5,  12,   22,    35,    51, ...
  0, 1, 10,  37,   92,   185,   326, ...
  0, 1, 18, 102,  345,   880,  1881, ...
  0, 1, 30, 258, 1188,  3851, 10002, ...
  0, 1, 47, 606, 3796, 15655, 49468, ...
		

Crossrefs

Columns k=0..2 give A000007, A000012, A177787.
Rows n=0..3 give A000012, A001477, A000326, A096000(k-1).
Main diagonal gives A382859.

Programs

  • PARI
    a(n, k) = sum(j=0, k, binomial(k, j)*binomial(n+(k-1)*j-1, n-j));

Formula

A(n,k) = Sum_{j=0..k} binomial(k,j) * binomial(n+(k-1)*j-1,n-j).
Showing 1-3 of 3 results.