cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A362125 Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - x*(1+x)^k)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 18, 5, 0, 1, 5, 26, 55, 47, 8, 0, 1, 6, 40, 124, 198, 118, 13, 0, 1, 7, 57, 235, 571, 681, 290, 21, 0, 1, 8, 77, 398, 1320, 2500, 2263, 702, 34, 0, 1, 9, 100, 623, 2640, 7026, 10504, 7341, 1677, 55, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2023

Keywords

Examples

			Square array begins:
  1, 1,   1,   1,    1,    1, ...
  0, 1,   2,   3,    4,    5, ...
  0, 2,   7,  15,   26,   40, ...
  0, 3,  18,  55,  124,  235, ...
  0, 5,  47, 198,  571, 1320, ...
  0, 8, 118, 681, 2500, 7026, ...
		

Crossrefs

Columns k=0..3 give A000007, A000045(n+1), A362126, A382614.
Main diagonal gives A362080.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(j+k-1, j)*binomial(k*j, n-j));

Formula

T(n,k) = Sum_{j=0..n} (-1)^j * binomial(-k,j) * binomial(k*j,n-j) = Sum_{j=0..n} binomial(j+k-1,j) * binomial(k*j,n-j).

A382406 Expansion of 1/(1 - x*(1 + x)^2)^3.

Original entry on oeis.org

1, 3, 12, 37, 111, 315, 864, 2307, 6027, 15471, 39132, 97755, 241606, 591636, 1437078, 3465748, 8305161, 19788957, 46910232, 110686101, 260064912, 608684490, 1419591546, 3300027546, 7648265728, 17676484410, 40747630332, 93704299336, 214999206831, 492262973433
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + x)^2)^3; seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 10 2025
  • Mathematica
    Table[Sum[Binomial[k+2,2]*Binomial[2*k,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(2*k, n-k));
    

Formula

a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,n-k).
a(n) = 3*a(n-1) + 3*a(n-2) - 8*a(n-3) - 12*a(n-4) + 3*a(n-5) + 17*a(n-6) + 15*a(n-7) + 6*a(n-8) + a(n-9).
G.f.: 1/(1-x-2*x^2-x^3)^3. - Vincenzo Librandi, Apr 10 2025

A382613 Expansion of 1/(1 - x*(1 + x)^3)^2.

Original entry on oeis.org

1, 2, 9, 28, 88, 270, 808, 2386, 6960, 20104, 57607, 163950, 463907, 1306104, 3661248, 10223820, 28452400, 78941412, 218426608, 602886704, 1660329597, 4563175466, 12517834605, 34280427828, 93729509848, 255900484218, 697712467704, 1899912606358, 5167488465184
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x - 3*x^2 - 3*x^3 - x^4)^2; seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 08 2025
  • Mathematica
    Table[Sum[(k+1)*Binomial[3*k,n-k],{k,0,n}],{n,0,28}] (* Vincenzo Librandi, Apr 08 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*binomial(3*k, n-k));
    

Formula

a(n) = Sum_{k=0..n} (k+1) * binomial(3*k,n-k).
a(n) = 2*a(n-1) + 5*a(n-2) - 13*a(n-4) - 20*a(n-5) - 15*a(n-6) - 6*a(n-7) - a(n-8).
G.f.: 1/(1 - x - 3*x^2 - 3*x^3 - x^4)^2. - Vincenzo Librandi, Apr 08 2025

A382892 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^3 * A(x) )^3.

Original entry on oeis.org

1, 3, 24, 190, 1659, 15309, 146986, 1453536, 14704917, 151479031, 1583533308, 16756882194, 179149227231, 1932144798513, 20996553430206, 229678298803028, 2527034248221849, 27947027713469307, 310494250880357488, 3463870813896354726, 38787008808135775299
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=3, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = ( 1 + x * (1+x)^3 * A(x)^(4/3) )^3.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
G.f.: B(x)^3, where B(x) is the g.f. of A366272.
Showing 1-4 of 4 results.