cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382614 Expansion of 1/(1 - x*(1 + x)^3)^3.

Original entry on oeis.org

1, 3, 15, 55, 198, 681, 2263, 7341, 23331, 72928, 224814, 684882, 2065346, 6173466, 18310212, 53935350, 157904130, 459755694, 1332010954, 3841812480, 11035346151, 31579747613, 90061069065, 256028590665, 725715896698, 2051465107719, 5784472106577, 16271956316851
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Column k=3 of A362125.
Cf. A382615.

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + x)^3)^3; seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 02 2025
  • Mathematica
    Table[Sum[Binomial[k+2,2]*Binomial[3*k,n-k],{k,0,n}],{n,0,27}] (* Vincenzo Librandi, Apr 02 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(3*k, n-k));
    

Formula

a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(3*k,n-k).
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3) - 33*a(n-4) - 24*a(n-5) + 39*a(n-6) + 108*a(n-7) + 123*a(n-8) + 84*a(n-9) + 36*a(n-10) + 9*a(n-11) + a(n-12).
G.f.: -1/(x^4+3*x^3+3x^2+x-1)^3. - Vincenzo Librandi, Apr 02 2025

A382886 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^2 * A(x) )^3.

Original entry on oeis.org

1, 3, 21, 154, 1248, 10710, 95751, 882297, 8320812, 79927938, 779303829, 7692585186, 76726084742, 772066751871, 7828529324175, 79908510600542, 820435635949686, 8467306916189517, 87791572491261912, 914032693961190414, 9552050623400554164, 100162810727306404897
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=2, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = ( 1 + x * (1+x)^2 * A(x)^(4/3) )^3.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
G.f.: B(x)^3, where B(x) is the g.f. of A378786.
Showing 1-2 of 2 results.