A237824 Number of partitions of n such that 2*(least part) >= greatest part.
1, 2, 3, 4, 5, 7, 7, 10, 11, 13, 14, 19, 18, 23, 25, 29, 30, 38, 37, 46, 48, 54, 57, 70, 69, 80, 85, 97, 100, 118, 118, 137, 144, 159, 168, 193, 195, 220, 233, 259, 268, 303, 311, 348, 367, 399, 419, 469, 483, 532, 560, 610, 639, 704, 732, 801, 841, 908, 954
Offset: 1
Keywords
Examples
a(6) = 7 counts these partitions: 6, 42, 33, 222, 2211, 21111, 111111. From _Gus Wiseman_, May 14 2023: (Start) The a(1) = 1 through a(8) = 10 partitions such that 2*(least part) >= greatest part: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (211) (221) (42) (322) (53) (1111) (2111) (222) (2221) (332) (11111) (2211) (22111) (422) (21111) (211111) (2222) (111111) (1111111) (22211) (221111) (2111111) (11111111) The a(1) = 1 through a(8) = 10 partitions whose greatest part appears at a middle position: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (1111) (221) (51) (61) (62) (11111) (222) (331) (71) (2211) (2221) (332) (111111) (1111111) (2222) (3311) (22211) (11111111) (End)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..300 from John Tyler Rascoe)
Crossrefs
These partitions have ranks A362981.
Programs
-
Mathematica
z = 60; q[n_] := q[n] = IntegerPartitions[n]; Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *) Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *) Table[Count[q[n], p_ /; 2 Min[p] == Max[p]], {n, z}] (* A118096 *) Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *) Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* this sequence *) (* or *) nmax = 100; Rest[CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j,k,2*k}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 13 2025 *) (* or *) nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax+1)]; s += x^k/(1 - x^k)/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 14 2025 *)
-
PARI
N=60; x='x+O('x^N); gf = sum(m=1, N, (x^m)/(1-x^m)) + sum(i=1, N, sum(j=1, i, x^((2*i)+j)/prod(k=0, j, 1 - x^(k+i)))); Vec(gf) \\ John Tyler Rascoe, Mar 07 2024
Formula
G.f.: Sum_{m>0} x^m/(1-x^m) + Sum_{i>0} Sum_{j=1..i} x^((2*i)+j) / Product_{k=0..j} (1 - x^(k+i)). - John Tyler Rascoe, Mar 07 2024
G.f.: Sum_{k>=1} x^k / Product_{j=k..2*k} (1 - x^j). - Vaclav Kotesovec, Jun 13 2025
a(n) ~ phi^(3/2) * exp(Pi*sqrt(2*n/15)) / (5^(1/4) * sqrt(2*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 14 2025
Comments