cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364023 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in descending order and concatenated, form a palindrome in base 10.

Original entry on oeis.org

111, 414, 777, 35853, 1226221, 7673767, 7744477, 9396939, 859767958, 11211911211, 12467976421, 72709290727, 93969696939, 1030507050301, 1120237320211, 1225559555221, 1234469644321, 1334459544331, 3254595954523, 10048622684001, 100330272033001, 100827848728001
Offset: 1

Views

Author

Vitaliy Kaurov, Jul 04 2023

Keywords

Examples

			111 = 37*3
414 = 23*3*3*2
777 = 37*7*3
35853 = 37*19*17*3
1226221 = 1201*1021
7673767 = 79111*97
7744477 = 3119*191*13
9396939 = 31013*101*3
859767958 = 2731*199*113*7*2
		

Crossrefs

Similar to A364050. Subsequence of A002113 and A024619.

Programs

  • Mathematica
    (* generate palindromes with even n *)
    poli[n_Integer?EvenQ]:=FromDigits[Join[#,Reverse[#]]]&/@
    DeleteCases[Tuples[Range[0,9],n/2],{0..,_}]
    (* generate palindromes with odd n *)
    poli[n_Integer?OddQ]:=Flatten[Table[FromDigits[Join[#,{k},Reverse[#]]]&/@
    DeleteCases[Tuples[Range[0,9],(n-1)/2],{0..,_}],{k,0,9}]]
    (* find descending factor sequence *)
    descendFACTOR[n_Integer]:=
    PalindromeQ[StringJoin[Reverse[ToString/@Flatten[Table[#1,#2]&@@@#]]]]&&
    Length[#]>1&@FactorInteger[n]
    (* example for palindromes of size 7 *)
    Parallelize@Select[poli[7],descendFACTOR]//Sort//AbsoluteTiming