cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364050 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in ascending order and concatenated, form a palindrome in base 10.

Original entry on oeis.org

10001, 36763, 1037301, 1226221, 9396939, 12467976421, 14432823441, 93969696939, 119092290911, 1030507050301, 1120237320211, 1225559555221, 1234469644321, 1334459544331, 100330272033001, 101222252222101, 103023070320301, 121363494363121, 134312696213431
Offset: 1

Views

Author

Vitaliy Kaurov, Jul 03 2023

Keywords

Comments

Palindromes p in A024619 such that A037276(p) is a palindrome.
Terms are coprime to 10. - David A. Corneth, Jul 05 2023

Examples

			  10001 = 73 * 137
  36763 = 97 * 379
1037301 = 3 * 29 * 11923
1226221 = 1021 * 1201
9396939 = 3 * 101 * 31013
		

Crossrefs

Subsequence of A002113 and A024619. Cf. A037276.
Similar to A364023.

Programs

  • Mathematica
    (* generate palindromes with even n *)
    poli[n_Integer?EvenQ]:=FromDigits[Join[#,Reverse[#]]]&/@
    DeleteCases[Tuples[Range[0,9],n/2],{0..,_}]
    (* generate palindromes with odd n *)
    poli[n_Integer?OddQ]:=Flatten[Table[FromDigits[Join[#,{k},Reverse[#]]]&/@
    DeleteCases[Tuples[Range[0,9],(n-1)/2],{0..,_}],{k,0,9}]]
    (* find ascending factor sequence *)
    ascendFACTOR[n_Integer]:=
    PalindromeQ[StringJoin[ToString/@Flatten[Table[#1,#2]&@@@#]]]&&
    Length[#]>1&@FactorInteger[n]
    (* example for palindromes of size 7 *)
    Parallelize@Select[poli[7],ascendFACTOR]//Sort//AbsoluteTiming
  • PARI
    nextpal(n, b) = {my(m=n+1, p = 0); while (m > 0, m = m\b; p++; ); if (n+1 == b^p, p++); n = n\(b^(p\2))+1; m = n; n = n\(b^(p%2)); while (n > 0, m = m*b + n%b; n = n\b; ); m; }
    ispal(n) = my(d=digits(n)); Vecrev(d) == d;
    g(f) = my(s=""); for (i=1, #f~, for (j=1, f[i,2], s = concat(s, Str(f[i,1])))); eval(s);
    isok(k) = my(f=factor(k)); if (#f~>=2, ispal(g(f)));
    lista(nn) = {my(k=0); while (k <= nn, if (ispal(k) && isok(k), print1(k, ", ")); k = nextpal(k,10););} \\ Michel Marcus, Jul 11 2023

A364024 Least number whose square and cube, taken together, are pandigital n times.

Original entry on oeis.org

69, 6534, 497375, 46839081, 4641856941, 464162827242, 46415911449392, 4641588990290676, 464158883559510629
Offset: 1

Views

Author

Robert G. Wilson v, Jul 01 2023

Keywords

Comments

Inspired by A363905.
Proper subset of A364023.

Examples

			a(1) is 69 since 69^2 = 4761 and 69^3 = 328509; together they include each of the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} exactly once;
a(2) is 6534 since 6534^2 = 42693156 and 6534^3 = 278957081304; together they include each decimal digit exactly twice;
a(3) is 497375 since 497375^2 = 247381890625 and 497375^3 = 123041567849609375; together they include each decimal digit exactly three times; etc.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = Floor[10^(2n-1/3)]}, While[ !MemberQ[{0, 3, 6, 8}, Mod[k, 9]] || Length@ Union[ Count[ Sort[ Join[ IntegerDigits[k^2], IntegerDigits[k^3]]], #] & /@ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}] > 1, k++]; k]
Showing 1-2 of 2 results.