cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vitaliy Kaurov

Vitaliy Kaurov's wiki page.

Vitaliy Kaurov has authored 2 sequences.

A364050 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in ascending order and concatenated, form a palindrome in base 10.

Original entry on oeis.org

10001, 36763, 1037301, 1226221, 9396939, 12467976421, 14432823441, 93969696939, 119092290911, 1030507050301, 1120237320211, 1225559555221, 1234469644321, 1334459544331, 100330272033001, 101222252222101, 103023070320301, 121363494363121, 134312696213431
Offset: 1

Author

Vitaliy Kaurov, Jul 03 2023

Keywords

Comments

Palindromes p in A024619 such that A037276(p) is a palindrome.
Terms are coprime to 10. - David A. Corneth, Jul 05 2023

Examples

			  10001 = 73 * 137
  36763 = 97 * 379
1037301 = 3 * 29 * 11923
1226221 = 1021 * 1201
9396939 = 3 * 101 * 31013
		

Crossrefs

Subsequence of A002113 and A024619. Cf. A037276.
Similar to A364023.

Programs

  • Mathematica
    (* generate palindromes with even n *)
    poli[n_Integer?EvenQ]:=FromDigits[Join[#,Reverse[#]]]&/@
    DeleteCases[Tuples[Range[0,9],n/2],{0..,_}]
    (* generate palindromes with odd n *)
    poli[n_Integer?OddQ]:=Flatten[Table[FromDigits[Join[#,{k},Reverse[#]]]&/@
    DeleteCases[Tuples[Range[0,9],(n-1)/2],{0..,_}],{k,0,9}]]
    (* find ascending factor sequence *)
    ascendFACTOR[n_Integer]:=
    PalindromeQ[StringJoin[ToString/@Flatten[Table[#1,#2]&@@@#]]]&&
    Length[#]>1&@FactorInteger[n]
    (* example for palindromes of size 7 *)
    Parallelize@Select[poli[7],ascendFACTOR]//Sort//AbsoluteTiming
  • PARI
    nextpal(n, b) = {my(m=n+1, p = 0); while (m > 0, m = m\b; p++; ); if (n+1 == b^p, p++); n = n\(b^(p\2))+1; m = n; n = n\(b^(p%2)); while (n > 0, m = m*b + n%b; n = n\b; ); m; }
    ispal(n) = my(d=digits(n)); Vecrev(d) == d;
    g(f) = my(s=""); for (i=1, #f~, for (j=1, f[i,2], s = concat(s, Str(f[i,1])))); eval(s);
    isok(k) = my(f=factor(k)); if (#f~>=2, ispal(g(f)));
    lista(nn) = {my(k=0); while (k <= nn, if (ispal(k) && isok(k), print1(k, ", ")); k = nextpal(k,10););} \\ Michel Marcus, Jul 11 2023

A364023 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in descending order and concatenated, form a palindrome in base 10.

Original entry on oeis.org

111, 414, 777, 35853, 1226221, 7673767, 7744477, 9396939, 859767958, 11211911211, 12467976421, 72709290727, 93969696939, 1030507050301, 1120237320211, 1225559555221, 1234469644321, 1334459544331, 3254595954523, 10048622684001, 100330272033001, 100827848728001
Offset: 1

Author

Vitaliy Kaurov, Jul 04 2023

Keywords

Examples

			111 = 37*3
414 = 23*3*3*2
777 = 37*7*3
35853 = 37*19*17*3
1226221 = 1201*1021
7673767 = 79111*97
7744477 = 3119*191*13
9396939 = 31013*101*3
859767958 = 2731*199*113*7*2
		

Crossrefs

Similar to A364050. Subsequence of A002113 and A024619.

Programs

  • Mathematica
    (* generate palindromes with even n *)
    poli[n_Integer?EvenQ]:=FromDigits[Join[#,Reverse[#]]]&/@
    DeleteCases[Tuples[Range[0,9],n/2],{0..,_}]
    (* generate palindromes with odd n *)
    poli[n_Integer?OddQ]:=Flatten[Table[FromDigits[Join[#,{k},Reverse[#]]]&/@
    DeleteCases[Tuples[Range[0,9],(n-1)/2],{0..,_}],{k,0,9}]]
    (* find descending factor sequence *)
    descendFACTOR[n_Integer]:=
    PalindromeQ[StringJoin[Reverse[ToString/@Flatten[Table[#1,#2]&@@@#]]]]&&
    Length[#]>1&@FactorInteger[n]
    (* example for palindromes of size 7 *)
    Parallelize@Select[poli[7],descendFACTOR]//Sort//AbsoluteTiming