cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372976 Number of minimum edge covers in the n-double cone graph.

Original entry on oeis.org

0, 3, 20, 27, 64, 75, 132, 147, 224, 243, 340, 363, 480, 507, 644, 675, 832, 867, 1044, 1083, 1280, 1323, 1540, 1587, 1824, 1875, 2132, 2187, 2464, 2523, 2820, 2883, 3200, 3267, 3604, 3675, 4032, 4107, 4484, 4563, 4960, 5043, 5460, 5547, 5984, 6075, 6532, 6627, 7104
Offset: 0

Views

Author

Eric W. Weisstein, May 26 2024

Keywords

Crossrefs

Cf. A364741.

Programs

  • Mathematica
    a[n_] := If[Mod[n, 2] == 0, 3*n^2 + 4*n, 3*n^2]; Table[a[n], {n, 3, 44}] (* Detlef Meya, Jun 20 2024 *)
    Table[n (2 + 2 (-1)^n + 3 n), {n, 0, 20}] (* Eric W. Weisstein, Dec 09 2024 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {3, 20, 27, 64, 75}, {0, 20}] (* Eric W. Weisstein, Dec 09 2024 *)
    CoefficientList[Series[(x (-3 - 17 x - x^2 - 3 x^3))/((-1 + x)^3 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 09 2024 *)

Formula

a(n) = 3*n^2 + 4*n if (n mod 2 = 0), otherwise 3*n^2. - Detlef Meya, Jun 20 2024
From Eric W. Weisstein, Dec 09 2024: (Start)
G.f.: x*(-3-17*x-x^2-3*x^3)/((-1+x)^3*(1+x)^2).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). (End)

Extensions

a(10) and beyond from Detlef Meya, Jun 20 2024
Offset changed to 0 and a(0)-a(2) added using the formula/recurrence by Eric W. Weisstein, Dec 09 2024

A379182 Number of minimal edge covers in the n-double cone graph.

Original entry on oeis.org

0, 1, 21, 58, 149, 566, 1676, 5482, 18021, 59665, 199700, 670517, 2259384, 7624878, 25759564, 87078065, 294452965, 995889190, 3368616437, 11395096538, 38547768152, 130403228310, 441145535869, 1492374662977, 5048648849760, 17079422831941, 57779211419220, 195465558240778
Offset: 0

Views

Author

Eric W. Weisstein, Dec 17 2024

Keywords

Comments

The sequence has been extended to n=0 using the recurrence. - Andrew Howroyd, Dec 18 2024

Crossrefs

Programs

  • PARI
    seq(n)={my(g1 = 1/(1-x -x^2 - x^3) + O(x*x^n), g2 = 1/(1-x^2-x^3) + O(x*x^n), h1 = g1 + x^2*g1 + 2*x^3*g1, h2 = g2 + x^2*g2 + 2*x^3*g2); Vec(serconvol(h1,h1) - serconvol(h2,h2) + 2*serconvol(h2, x*deriv(2*x^2*g2 + x^3*g2)), -n-1)} \\ Andrew Howroyd, Dec 18 2024

Formula

G.f.: x*(1 + 17*x - 26*x^2 - 81*x^3 + 33*x^4 - 39*x^5 + 118*x^6 - 312*x^7 + 461*x^8 - 260*x^9 + 183*x^10 - 211*x^11 + 33*x^12 + 10*x^13 + 3*x^14 - 2*x^16)/((1 + x + x^2 - x^3)*(1 + x - x^3)^2*(1 - 2*x + x^2 - x^3)^2*(1 - 3*x - x^2 - x^3)). - Andrew Howroyd, Dec 18 2024

Extensions

a(0)-a(2) prepended and a(8) onwards from Andrew Howroyd, Dec 18 2024
Showing 1-2 of 2 results.