A372976 Number of minimum edge covers in the n-double cone graph.
0, 3, 20, 27, 64, 75, 132, 147, 224, 243, 340, 363, 480, 507, 644, 675, 832, 867, 1044, 1083, 1280, 1323, 1540, 1587, 1824, 1875, 2132, 2187, 2464, 2523, 2820, 2883, 3200, 3267, 3604, 3675, 4032, 4107, 4484, 4563, 4960, 5043, 5460, 5547, 5984, 6075, 6532, 6627, 7104
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Double Cone Graph.
- Eric Weisstein's World of Mathematics, Minimum Edge Cover.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Cf. A364741.
Programs
-
Mathematica
a[n_] := If[Mod[n, 2] == 0, 3*n^2 + 4*n, 3*n^2]; Table[a[n], {n, 3, 44}] (* Detlef Meya, Jun 20 2024 *) Table[n (2 + 2 (-1)^n + 3 n), {n, 0, 20}] (* Eric W. Weisstein, Dec 09 2024 *) LinearRecurrence[{1, 2, -2, -1, 1}, {3, 20, 27, 64, 75}, {0, 20}] (* Eric W. Weisstein, Dec 09 2024 *) CoefficientList[Series[(x (-3 - 17 x - x^2 - 3 x^3))/((-1 + x)^3 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 09 2024 *)
Formula
a(n) = 3*n^2 + 4*n if (n mod 2 = 0), otherwise 3*n^2. - Detlef Meya, Jun 20 2024
From Eric W. Weisstein, Dec 09 2024: (Start)
G.f.: x*(-3-17*x-x^2-3*x^3)/((-1+x)^3*(1+x)^2).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). (End)
Extensions
a(10) and beyond from Detlef Meya, Jun 20 2024
Offset changed to 0 and a(0)-a(2) added using the formula/recurrence by Eric W. Weisstein, Dec 09 2024
Comments