cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229522 Final digit (in decimal system) of (n^n)^n, i.e., (n^n)^n mod 10.

Original entry on oeis.org

1, 6, 3, 6, 5, 6, 7, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 6, 9, 0, 1, 6, 3, 6, 5, 6
Offset: 1

Views

Author

Keywords

Comments

Periodic sequence with period 10.

Crossrefs

Cf. A002489, A120962, A364789 (initial digit).

Programs

  • Mathematica
    Table[PowerMod[n^n, n, 10], {n, 200}]
  • PARI
    a(n)=n%=10; lift(Mod(n,10)^n^n) \\ Charles R Greathouse IV, Dec 27 2013
    
  • Python
    def A229522(n): return (0, 1, 6, 3, 6, 5, 6, 7, 6, 9)[n%10] # Chai Wah Wu, Aug 10 2023

Formula

a(n) = A120962(A002489(n)). - Michel Marcus, Aug 09 2023

A364837 Initial digit of 2^(2^n) = A001146(n).

Original entry on oeis.org

2, 4, 1, 2, 6, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 2, 4, 1, 2, 6, 4, 2, 4, 1, 3, 1, 1, 1, 2, 4, 1, 3, 9, 9, 8, 7, 5, 2, 8, 8, 6, 4, 1, 3, 9, 9, 9, 9, 9, 8, 7, 5, 2, 8, 7, 6, 3, 1, 2, 5, 3, 1, 1, 1, 3, 1, 1, 3, 9, 8, 7, 5, 3, 1, 1, 1, 3, 1, 2, 4, 2, 5, 2, 6, 4, 1, 2
Offset: 0

Views

Author

Marco Ripà, Aug 10 2023

Keywords

Comments

The sequence corresponds to the initial digit of 2vvn (since 2^(2^n) = ((((2^2)^2)^...)^2) (n times)), where vv indicates weak tetration (see links).
Conjecture: this sequence obeys Benford's law.
For any n > 1, the final digit of 2^(2^n) is 6.

Examples

			a(5) = 4, since 2^(2^5) = 2^32 = 4294967296.
		

Crossrefs

Programs

  • Mathematica
    Join[{2},Table[Floor[2^(2^n)/10^Floor[Log10[2^(2^n)]]],{n,27}]] (* Stefano Spezia, Aug 10 2023 *)
  • Python
    def A364837(n): return int(str(1<<(1<Chai Wah Wu, Sep 14 2023

Formula

a(n) = floor(2^(2^n)/10^floor(log_10(2^(2^n)))), for n > 0.
a(n) = A000030(A001146(n)).

Extensions

More terms from Jinyuan Wang, Aug 10 2023

A364855 Initial digit of 3^(3^n) (A055777(n)).

Original entry on oeis.org

3, 2, 1, 7, 4, 8, 6, 2, 2, 1, 3, 3, 6, 2, 1, 3, 3, 4, 6, 2, 2, 1, 1, 1, 5, 1, 2, 1, 1, 7, 4, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 7, 4, 8, 6, 2, 1, 2, 1, 3, 4, 1, 1, 1, 4, 8, 6, 2, 2, 1, 2, 2, 1, 5, 1, 6, 3, 3, 4, 1, 1, 2, 1, 5, 1, 4, 1
Offset: 0

Views

Author

Marco Ripà, Aug 10 2023

Keywords

Comments

This sequence corresponds to the initial digit of 3vvn (since 3^(3^n) = ((((3^3)^3)^...)^3) n-times), where vv indicates weak tetration (see links).
The author conjectures that the distribution of the initial digits of the present sequence obey Benford's law or Zipf's law (see links).
The corresponding final digit of 3^(3^n) is A010705(n) = 3 if n even or 7 if n odd.

Examples

			a(2) = 1, since 3^(3^2) = 3^9 = 19683.
		

References

  • A. Iorliam, Natural Laws (Benford's Law and Zipf's Law) For Network Traffic Analysis, In: Cybersecurity in Nigeria. SpringerBriefs in Cybersecurity. Springer, Cham (2019), 3-22. DOI: 10.1007/978-3-030-15210-9_2

Crossrefs

Cf. A000030, A010705 (last digit), A055777, A364789, A364837.

Programs

  • Mathematica
    Join[{3},Table[Floor[3^(3^n)/10^Floor[Log10[3^(3^n)]]],{n,16}]]

Formula

a(n) = floor(3^(3^n)/10^floor(log_10(3^(3^n)))).
a(n) = A000030(A055777(n)).

Extensions

More terms from Jinyuan Wang, Aug 11 2023
Showing 1-3 of 3 results.