cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113014 Decimal expansion of value of the continued fraction 1/(2+3/(4+5/(6+7/....

Original entry on oeis.org

3, 7, 9, 7, 3, 1, 9, 5, 4, 7, 4, 0, 9, 9, 5, 6, 3, 2, 8, 0, 2, 1, 0, 6, 2, 5, 3, 6, 3, 4, 7, 5, 5, 3, 8, 1, 6, 1, 2, 5, 9, 4, 1, 6, 0, 3, 5, 9, 0, 8, 1, 2, 5, 3, 1, 5, 2, 6, 4, 3, 3, 4, 4, 9, 4, 4, 8, 8, 0, 5, 2, 5, 3, 7, 3, 6, 3, 5, 6, 7, 3, 8, 3, 1, 7, 4, 4, 4, 8, 3, 2, 3, 0, 7, 1, 5, 4, 8, 1, 7, 4, 8, 3, 4, 0
Offset: 0

Views

Author

T. D. Noe, Oct 10 2005

Keywords

Comments

This fraction equals sqrt(2e/Pi)/erfi(1/sqrt(2)) - 1. - Robert Israel, Aug 29 2007

Examples

			0.3797319547409956328...
		

Crossrefs

Programs

  • Mathematica
    n=150; s=n; While[n-2>=0, s=n-2 + (n-1)/s; n=n-2]; RealDigits[N[s, 120]][[1]]
    RealDigits[N[Sqrt[2E/Pi]/Erfi[1/Sqrt[2]]-1,120]][[1]] (* T. D. Noe, Oct 06 2008 *)
  • PARI
    {Erfi(z) = -I*(1.0-erfc(I*z))};
    real(sqrt(2*exp(1)/Pi)/Erfi(1/sqrt(2)) - 1) \\ G. C. Greubel, Apr 09 2018

Extensions

Sci.math link from Bhushit Joshipura (joshipura(AT)gmail.com), Jul 15 2008

A365105 Continued fraction expansion of 1/(2+3/(4+5/(6+7/(...)))) = A113014.

Original entry on oeis.org

0, 2, 1, 1, 1, 2, 1, 2, 10, 2, 2, 66, 1, 1, 13, 66, 9, 5, 8, 1, 9, 1, 1, 1, 5, 2, 2, 3, 1, 1, 1, 16, 99, 6, 1, 5, 1, 2, 1, 55, 2, 2, 1, 1, 6, 4, 1, 1, 1, 40, 1, 1, 1, 6, 14, 7, 9, 1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 7, 12, 1, 2, 2, 1, 4, 2, 4, 2, 1, 3, 2, 1, 10, 7, 1, 4, 1, 119, 1, 1, 1, 3, 5, 2, 12, 1
Offset: 0

Views

Author

Rok Cestnik, Aug 21 2023

Keywords

Comments

A113014 is defined by a generalized continued fraction and the expansion here is its simple continued fraction.

Examples

			1/(2+1/(1+1/(1+1/(1+1/(2+1/(...)))))) = 1/(2+3/(4+5/(6+7/(...)))).
		

Crossrefs

Programs

  • Mathematica
    A365105 = ContinuedFraction[Sqrt[2*E/Pi]/Erfi[1/Sqrt[2]]-1,#]&;
Showing 1-2 of 2 results.