cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A365105 Continued fraction expansion of 1/(2+3/(4+5/(6+7/(...)))) = A113014.

Original entry on oeis.org

0, 2, 1, 1, 1, 2, 1, 2, 10, 2, 2, 66, 1, 1, 13, 66, 9, 5, 8, 1, 9, 1, 1, 1, 5, 2, 2, 3, 1, 1, 1, 16, 99, 6, 1, 5, 1, 2, 1, 55, 2, 2, 1, 1, 6, 4, 1, 1, 1, 40, 1, 1, 1, 6, 14, 7, 9, 1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 7, 12, 1, 2, 2, 1, 4, 2, 4, 2, 1, 3, 2, 1, 10, 7, 1, 4, 1, 119, 1, 1, 1, 3, 5, 2, 12, 1
Offset: 0

Views

Author

Rok Cestnik, Aug 21 2023

Keywords

Comments

A113014 is defined by a generalized continued fraction and the expansion here is its simple continued fraction.

Examples

			1/(2+1/(1+1/(1+1/(1+1/(2+1/(...)))))) = 1/(2+3/(4+5/(6+7/(...)))).
		

Crossrefs

Programs

  • Mathematica
    A365105 = ContinuedFraction[Sqrt[2*E/Pi]/Erfi[1/Sqrt[2]]-1,#]&;

A365116 Greedy Egyptian fraction expansion of 1/(2+3/(4+5/(6+7/(...)))) = A113014.

Original entry on oeis.org

3, 22, 1060, 1471180, 4470565318951, 21387196871513452925199541, 508406155285302398938678134812723800438323137635884, 293206664431782985993415302840424364324000216460330294129310314248712028637333711113413230006858255456
Offset: 1

Views

Author

Rok Cestnik, Aug 22 2023

Keywords

Examples

			1/3 + 1/22 + 1/1060 + 1/1471180 + ... = 1/(2+3/(4+5/(6+7/(...)))).
		

Crossrefs

A306858 Decimal expansion of 1 - 1/(1*3) + 1/(1*3*5) - 1/(1*3*5*7) + ...

Original entry on oeis.org

7, 2, 4, 7, 7, 8, 4, 5, 9, 0, 0, 7, 0, 7, 6, 3, 3, 1, 8, 1, 8, 2, 2, 7, 9, 6, 7, 6, 0, 6, 2, 1, 6, 1, 6, 6, 3, 1, 2, 1, 3, 2, 9, 3, 0, 6, 2, 3, 8, 1, 7, 4, 4, 9, 0, 7, 2, 8, 8, 8, 3, 3, 6, 6, 1, 9, 7, 6, 9, 5, 8, 9, 6, 0, 9, 8, 6, 0, 7, 9, 9, 7, 6, 1, 8, 0, 0, 7, 1, 2, 6, 5, 0, 2, 0, 3, 6, 0, 1, 4, 4, 5, 8, 3, 3, 1, 8, 9, 7, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 24 2019

Keywords

Examples

			0.7247784590070763318182279676062161663121329...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[Pi/(2 Exp[1])] Erfi[1/Sqrt[2]], 10, 110] [[1]]
    RealDigits[Sqrt[2] DawsonF[1/Sqrt[2]], 10, 110] [[1]]

Formula

Equals sqrt(Pi/(2*exp(1)))*erfi(1/sqrt(2)), where erfi is the imaginary error function.
Equals (1/sqrt(e)) * Sum_{k>=0} 1/(2^k * k! * (2*k+1)) = 1/(sqrt(e)) * Sum_{k>=0} 1/A014481(k). - Amiram Eldar, Nov 12 2021
Equals 1/(1+A113014). - Jon Maiga, Nov 12 2021

A367120 Decimal expansion of continued fraction 2+1/(4+3/(6+5/(8+7/(...)))).

Original entry on oeis.org

2, 2, 2, 4, 4, 1, 2, 4, 3, 7, 9, 5, 6, 3, 4, 0, 4, 6, 7, 1, 6, 3, 8, 3, 7, 5, 4, 1, 3, 8, 4, 0, 2, 1, 9, 3, 9, 0, 6, 2, 7, 8, 8, 2, 5, 7, 0, 9, 4, 1, 0, 9, 2, 7, 1, 4, 6, 3, 2, 0, 3, 4, 2, 9, 7, 2, 0, 4, 3, 2, 0, 9, 2, 7, 5, 4, 4, 6, 5, 4, 8, 9, 9, 9, 9, 9, 6, 1, 9, 3, 5, 4, 0, 9, 8, 2, 5, 3, 7
Offset: 1

Views

Author

Rok Cestnik, Nov 13 2023

Keywords

Examples

			2.224412437956340467163837541384021939...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[2/HypergeometricPFQ[{1, 1}, {3/2, 3}, -1/2], 10, 100]] (* or *)
    First[RealDigits[2/Sum[(-1)^k/Binomial[k+2, 2]/(2*k+1)!!, {k, 0, Infinity}], 10, 100]] (* Paolo Xausa, Nov 18 2024 *)
  • PARI
    N=50;
    doblfac(n) = if(n<0, 0, n<2, 1, n*doblfac(n-2));
    ap1 = 2 / sum(k=0,N, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));
    ap2 = 2 / sum(k=0,N+1, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));
    n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);
    A367120 = digits(floor(10^n*ap1));

Formula

Equals 2 / pFq(1,1; 3/2,3; -1/2) where pFq() is the generalized hypergeometric function.
Equals 2 / Sum_{k>=0} (-1)^k/binomial(k+2,2)/(2*k+1)!! = 2 / (1 - 1/9 + 1/90 - 1/1050 + 1/14175 - 1/218295 + ... ).
Showing 1-4 of 4 results.