cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365345 The number of divisors of the smallest square divisible by n.

Original entry on oeis.org

1, 3, 3, 3, 3, 9, 3, 5, 3, 9, 3, 9, 3, 9, 9, 5, 3, 9, 3, 9, 9, 9, 3, 15, 3, 9, 5, 9, 3, 27, 3, 7, 9, 9, 9, 9, 3, 9, 9, 15, 3, 27, 3, 9, 9, 9, 3, 15, 3, 9, 9, 9, 3, 15, 9, 15, 9, 9, 3, 27, 3, 9, 9, 7, 9, 27, 3, 9, 9, 27, 3, 15, 3, 9, 9, 9, 9, 27, 3, 15, 5, 9, 3
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The sum of these divisors is A365346(n).
The number of divisors of the square root of the smallest square divisible by n is A322483(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e + 1 + Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> x + 1 + x%2, factor(n)[, 2]));
    
  • PARI
    a(n) = numdiv(n*core(n)); \\ Michel Marcus, Sep 02 2023

Formula

a(n) = A000005(A053143(n)).
Multiplicative with a(p^e) = e + 1 + (e mod 2).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 2/p^s - 1/p^(2*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s)^3 * zeta(2*s) * Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Let f(s) = Product_{primes p} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^2 * n / 6 * (log(n)^2/2 + (3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)) * log(n) + 1 - 3*gamma + 3*gamma^2 - 3*sg1 + (3*gamma - 1)*12*zeta'(2)/Pi^2 + 12*zeta''(2)/Pi^2 + (12*zeta'(2)/Pi^2 + 3*gamma - 1)*f'(1)/f(1) + f''(1)/(2*f(1))), where
f(1) = Product_{primes p} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(1) = f(1) * Sum_{primes p} 4*(2*p - 1) * log(p) / (1 - 3*p + p^2 + p^3) = 0.7343690473711153863995729489689746152413988981744946512300478410459132782...
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} 4*p*(-1 + 2*p + p^2 - 4*p^3) * log(p)^2 / (1 - 3*p + p^2 + p^3)^2 = 0.1829055032494906699795154632343894745397324334876662084674149254022564139...,
gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)

A365347 The sum of divisors of the smallest number whose square is divisible by n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 7, 4, 18, 12, 12, 14, 24, 24, 7, 18, 12, 20, 18, 32, 36, 24, 28, 6, 42, 13, 24, 30, 72, 32, 15, 48, 54, 48, 12, 38, 60, 56, 42, 42, 96, 44, 36, 24, 72, 48, 28, 8, 18, 72, 42, 54, 39, 72, 56, 80, 90, 60, 72, 62, 96, 32, 15, 84, 144, 68, 54
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The number of divisors of the smallest number whose square is divisible by n is A322483(n).
The sum of divisors of the smallest square divisible by n is A365346(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^((e + Mod[e, 2])/2 + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^((f[i,2] + f[i,2]%2)/2 + 1) - 1)/(f[i,1] - 1));}
    
  • PARI
    a(n) = sigma(n/core(n, 1)[2]); \\ Michel Marcus, Sep 02 2023

Formula

a(n) = A000203(A019554(n)).
Multiplicative with a(p^e) = (p^(e + 1 + (e mod 2)) - 1)/(p - 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * zeta(3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/2) * A002117 * A065465 = 0.529814898136... .

A365479 The sum of unitary divisors of the smallest square divisible by n.

Original entry on oeis.org

1, 5, 10, 5, 26, 50, 50, 17, 10, 130, 122, 50, 170, 250, 260, 17, 290, 50, 362, 130, 500, 610, 530, 170, 26, 850, 82, 250, 842, 1300, 962, 65, 1220, 1450, 1300, 50, 1370, 1810, 1700, 442, 1682, 2500, 1850, 610, 260, 2650, 2210, 170, 50, 130, 2900, 850, 2810, 410
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of unitary divisors of the smallest square divisible by n is the same as the number of unitary divisors of n, A034444(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + p^(e + Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^(f[i,2] + f[i,2]%2) + 1);}
    
  • Python
    from math import prod
    from sympy import factorint
    def A365479(n): return prod(p**(e+(e&1))+1 for p,e in factorint(n).items()) # Chai Wah Wu, Sep 05 2023

Formula

a(n) = A034448(A053143(n)).
Multiplicative with a(p^e) = p^(e + (e mod 2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-2) - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * zeta(3) * Product_{p prime} (1 - 1/p^4 + 1/p^5 - 1/p^6) = 0.248414056414... .
Showing 1-3 of 3 results.