A367180
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^2) - 1)/A(x).
Original entry on oeis.org
1, 1, 3, 19, 187, 2491, 41951, 855387, 20491395, 564179371, 17555839639, 609337562923, 23340215770235, 978038556122811, 44506423393073487, 2185725954288076987, 115224508775345033779, 6490005347933921581195, 388973650645651854960455
Offset: 0
-
a(n) = sum(k=0, n, (2*n-k)!/(2*n-2*k+1)!*stirling(n, k, 2));
A365546
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x)^2.
Original entry on oeis.org
1, 1, 3, 23, 298, 5314, 120776, 3341568, 108992472, 4095073848, 174169888536, 8272115427432, 433956083676336, 24921123498835056, 1555004372522100384, 104757005524567577088, 7578056156152486855680, 585874671534300791384064
Offset: 0
-
a(n) = sum(k=0, n, (3*n-2*k)!/(3*n-3*k+1)!*abs(stirling(n, k, 1)));
A377325
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x))/A(x).
Original entry on oeis.org
1, 1, 1, 5, 28, 244, 2566, 33438, 508544, 8926944, 176989488, 3917823216, 95719041408, 2559130965312, 74312569125744, 2329169772108528, 78371469374088960, 2817744760964392704, 107807187260426164992, 4373419962377871956736, 187507942522161269068800
Offset: 0
-
a(n) = sum(k=0, (n+1)\2, (n-k)!/(n-2*k+1)!*abs(stirling(n, k, 1)));
A377323
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x).
Original entry on oeis.org
1, 1, 5, 53, 884, 20234, 589834, 20903700, 872660256, 41944510752, 2281437791448, 138539360885760, 9290720296262976, 681965664411820944, 54384461861952738528, 4682101594725064872768, 432815761314471190599936, 42757813607285233998385920, 4495579313771176952867958528
Offset: 0
-
a(n) = sum(k=0, n, (3*n-k)!/(3*n-2*k+1)!*abs(stirling(n, k, 1)));
A366729
E.g.f. satisfies A(x) = 1 + log(1 + x*A(x)^2)/A(x).
Original entry on oeis.org
1, 1, 1, -4, -36, 14, 3100, 22112, -374640, -9520320, 9674808, 4085208192, 55207595520, -1640647901088, -69445046214336, 103240707929088, 71686341699216384, 1439635203885275136, -60449514895261440000, -3608840044036879934976
Offset: 0
-
a(n) = sum(k=0, n, (2*n-k)!/(2*n-2*k+1)!*stirling(n, k, 1));
A377349
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^2)/A(x)^2.
Original entry on oeis.org
1, 1, 1, 8, 62, 744, 11102, 201704, 4323720, 106591584, 2974873656, 92674125840, 3188299718496, 120053825169888, 4911082489042992, 216879763758962688, 10283600782413709056, 521088305671611058176, 28101278301136842204288, 1606968565080853531472640
Offset: 0
-
a(n) = sum(k=0, (2*n+1)\3, (2*n-2*k)!/(2*n-3*k+1)!*abs(stirling(n, k, 1)));
A377329
E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)^2).
Original entry on oeis.org
1, 1, 9, 164, 4590, 174364, 8388634, 489088592, 33523741560, 2642134225416, 235430782725744, 23405320602599616, 2568397523286868080, 308376740778642665856, 40213392368801846121792, 5659917793199595766848000, 855188706536492203489860480, 138068648223418996408877210496
Offset: 0
-
a(n) = sum(k=0, n, (2*n+2*k)!/(2*n+k+1)!*abs(stirling(n, k, 1)));
Showing 1-7 of 7 results.