A365438
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^2)/A(x).
Original entry on oeis.org
1, 1, 3, 20, 216, 3214, 60940, 1405088, 38165904, 1193631360, 42244603368, 1669171435392, 72834612333120, 3478615044283872, 180496518526631424, 10110668949900238848, 608110470593816945664, 39086875354688578492416, 2673826803093451383429120
Offset: 0
-
a(n) = sum(k=0, n, (2*n-k)!/(2*n-2*k+1)!*abs(stirling(n, k, 1)));
A367181
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x)^2.
Original entry on oeis.org
1, 1, 3, 22, 261, 4186, 85035, 2096242, 60793257, 2028053146, 76512294567, 3221179205410, 149713378082301, 7614267616582810, 420634056602820099, 25081994054279063506, 1605673188973569254481, 109838361160586478627226, 7995918540574019507985471
Offset: 0
-
a(n) = sum(k=0, n, (3*n-2*k)!/(3*n-3*k+1)!*stirling(n, k, 2));
A377323
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x).
Original entry on oeis.org
1, 1, 5, 53, 884, 20234, 589834, 20903700, 872660256, 41944510752, 2281437791448, 138539360885760, 9290720296262976, 681965664411820944, 54384461861952738528, 4682101594725064872768, 432815761314471190599936, 42757813607285233998385920, 4495579313771176952867958528
Offset: 0
-
a(n) = sum(k=0, n, (3*n-k)!/(3*n-2*k+1)!*abs(stirling(n, k, 1)));
A377327
E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)^3).
Original entry on oeis.org
1, 1, 11, 251, 8858, 425534, 25928068, 1916213928, 166580610504, 16657218047328, 1883646389742624, 237695994684785592, 33113333472295201536, 5047818696187818951984, 835818979837614364874496, 149383091745519898076484480, 28663410267058615074689247360, 5877004345535507714104006175616
Offset: 0
-
a(n) = sum(k=0, n, (3*n+2*k)!/(3*n+k+1)!*abs(stirling(n, k, 1)));
A377350
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x)^3.
Original entry on oeis.org
1, 1, 1, 11, 108, 1584, 29808, 674988, 18091944, 557844408, 19468760904, 758698622472, 32653135227936, 1538316755200224, 78737559447563136, 4350956519444451840, 258163046132873143680, 16370486288763937324416, 1104824513292622360789248, 79068747951669626322531840
Offset: 0
-
a(n) = sum(k=0, (3*n+1)\4, (3*n-3*k)!/(3*n-4*k+1)!*abs(stirling(n, k, 1)));
Showing 1-5 of 5 results.