cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A103391 "Even" fractal sequence for the natural numbers: Deleting every even-indexed term results in the same sequence.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 14, 8, 15, 5, 16, 9, 17, 2, 18, 10, 19, 6, 20, 11, 21, 4, 22, 12, 23, 7, 24, 13, 25, 3, 26, 14, 27, 8, 28, 15, 29, 5, 30, 16, 31, 9, 32, 17, 33, 2, 34, 18, 35, 10, 36, 19, 37, 6, 38, 20, 39, 11, 40, 21, 41, 4, 42, 22, 43, 12, 44, 23, 45, 7, 46, 24, 47, 13, 48, 25, 49, 3, 50, 26, 51, 14, 52, 27, 53, 8
Offset: 1

Views

Author

Eric Rowland, Mar 20 2005

Keywords

Comments

A003602 is the "odd" fractal sequence for the natural numbers.
Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(A005940(i)) = A348717(A005940(j)) for all i, j >= 1. A365718 is an analogous sequence related to A356867 (Doudna variant D(3)). - Antti Karttunen, Sep 17 2023

Crossrefs

Cf. A003602, A005940, A025480, A220466, A286387, A353368 (Dirichlet inverse).
Cf. also A110962, A110963, A365718.
Differs from A331743(n-1) for the first time at n=192, where a(192) = 97, while A331743(191) = 23.
Differs from A351460.

Programs

  • Haskell
    -- import Data.List (transpose)
    a103391 n = a103391_list !! (n-1)
    a103391_list = 1 : ks where
       ks = concat $ transpose [[2..], ks]
    -- Reinhard Zumkeller, May 23 2013
    
  • Maple
    nmax := 82: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 2 to ceil(nmax/(p+2))+1 do a((2*n-3)*2^p+1) := n od: od: a(1) := 1: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 28 2013
  • Mathematica
    a[n_] := ((n-1)/2^IntegerExponent[n-1, 2] + 3)/2; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 24 2023 *)
  • PARI
    A003602(n) = (n/2^valuation(n, 2)+1)/2; \\ From A003602
    A103391(n) = if(1==n,1,(1+A003602(n-1))); \\ Antti Karttunen, Feb 05 2020
    
  • Python
    def v(n): b = bin(n); return len(b) - len(b.rstrip("0"))
    def b(n): return (n//2**v(n)+1)//2
    def a(n): return 1 if n == 1 else 1 + b(n-1)
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, May 29 2022
    
  • Python
    def A103391(n): return (n-1>>(n-1&-n+1).bit_length())+2 if n>1 else 1 # Chai Wah Wu, Jan 04 2024

Formula

For n > 1, a(n) = A003602(n-1) + 1. - Benoit Cloitre, May 26 2007, indexing corrected by Antti Karttunen, Feb 05 2020
a((2*n-3)*2^p+1) = n, p >= 0 and n >= 2, with a(1) = 1. - Johannes W. Meijer, Jan 28 2013
Sum_{k=1..n} a(k) ~ n^2/6. - Amiram Eldar, Sep 24 2023

Extensions

Data section extended up to a(105) (to better differentiate from several nearby sequences) by Antti Karttunen, Feb 05 2020

A365715 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365465(i) = A365465(j) for all i, j >= 1, where A365465(n) = A356867(n) / gcd(n, A356867(n)), and A356867 is Sycamore's Doudna variant D(3).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 1, 1, 5, 6, 2, 7, 4, 3, 7, 8, 1, 9, 5, 4, 10, 11, 1, 3, 8, 1, 12, 13, 5, 14, 12, 6, 9, 15, 2, 16, 16, 7, 9, 17, 4, 18, 19, 3, 20, 21, 7, 22, 3, 8, 10, 23, 1, 5, 14, 9, 24, 25, 5, 26, 27, 4, 28, 29, 10, 30, 31, 11, 10, 32, 1, 33, 21, 3, 34, 35, 8, 36, 15, 1, 37, 38, 12, 37, 38, 13, 39, 40, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2023

Keywords

Comments

Restricted growth sequence transform of A365465.
Compare to the scatter plots of A365431 (analogous sequence for Doudna variant D(2)), and also of A365393 and A365718.

Crossrefs

Programs

  • PARI
    \\ Needs also program from A356867:
    up_to = 59049; \\ = 3^10.
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A365465(n) = (A356867(n)/gcd(n, A356867(n)));
    v365715 = rgs_transform(vector(up_to,n,A365465(n)));
    A365715(n) = v365715[n];

A365717 a(n) is the least k such that A003961^i(k) = A356867(1+n) for some i >= 0, where A003961^i denotes the i-th iterate of prime shift, and A356867 is Sycamore's Doudna variant D(3).

Original entry on oeis.org

1, 2, 2, 2, 4, 6, 10, 8, 4, 2, 14, 6, 4, 20, 12, 50, 16, 18, 6, 28, 30, 8, 40, 24, 100, 32, 8, 2, 22, 10, 10, 44, 42, 70, 56, 12, 4, 98, 18, 12, 140, 60, 250, 80, 36, 18, 196, 150, 16, 200, 48, 500, 64, 54, 6, 110, 30, 20, 88, 84, 350, 112, 90, 8, 490, 54, 24, 280, 120, 1250, 160, 72, 36, 392, 300, 32, 400, 96, 1000
Offset: 0

Views

Author

Antti Karttunen, Sep 17 2023

Keywords

Crossrefs

Cf. A348717, A356867, A365718 (rgs-transform), A365719, A365721, A365722.

Programs

  • PARI
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    A365717(n) = A348717(A356867(1+n)); \\ Needs also program from A356867.

Formula

a(n) = A348717(A356867(1+n)).

A365720 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365719(i) = A365719(j) for all i, j >= 0, where A365719(n) = A046523(A356867(1+n)).

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 5, 3, 2, 4, 4, 3, 6, 6, 6, 7, 6, 4, 6, 8, 5, 9, 9, 10, 11, 5, 2, 4, 4, 4, 6, 8, 8, 9, 6, 3, 6, 6, 6, 12, 12, 9, 13, 10, 6, 10, 12, 7, 14, 13, 14, 15, 9, 4, 8, 8, 6, 9, 12, 12, 13, 12, 5, 12, 9, 9, 16, 16, 13, 17, 14, 10, 14, 18, 11, 19, 17, 20, 21, 7, 2, 4, 4, 4, 6, 8, 8, 9, 6, 4, 8, 8, 6, 12, 12, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 17 2023

Keywords

Comments

Restricted growth sequence transform of A365719.
For all i, j >= 0:
A365718(i) = A365718(j) => a(i) = a(j),
a(i) = a(j) => A365721(i) = A365721(j),
a(i) = a(j) => A365722(i) = A365722(j).

Crossrefs

Cf. A046523, A356867, A365718, A365720 (rgs-transform), A365721, A365722.
Cf. also A286622.

Programs

  • PARI
    up_to = 59049; \\ = 3^10.
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A356867list(up_to) = { my(v=vector(up_to),met=Map(),h=0,ak); for(i=1,#v,if(1==vecsum(digits(i,3)), v[i] = i; h = i, ak = v[i-h]; forprime(p=2,,if(3!=p && !mapisdefined(met,p*ak), v[i] = p*ak; break))); mapput(met,v[i],i)); (v); };
    v365720 = rgs_transform(apply(A046523,A356867list(1+up_to)));
    A365720(n) = v365720[1+n];
Showing 1-4 of 4 results.