cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A366621 Number of divisors of 6^n-1.

Original entry on oeis.org

2, 4, 4, 8, 6, 16, 4, 16, 16, 48, 8, 128, 8, 48, 48, 64, 32, 128, 8, 384, 16, 32, 32, 512, 32, 128, 64, 384, 4, 1536, 8, 512, 64, 256, 96, 8192, 64, 64, 64, 3072, 8, 768, 32, 512, 1536, 256, 16, 8192, 32, 512, 512, 2048, 16, 2048, 96, 12288, 128, 64, 16
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=8 because 6^4-1 has divisors {1, 5, 7, 35, 37, 185, 259, 1295}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](6^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 6^Range[100]-1]
  • PARI
    a(n) = numdiv(6^n-1);

Formula

a(n) = sigma0(6^n-1) = A000005(A024062(n)).

A366661 Number of divisors of 9^n-1.

Original entry on oeis.org

4, 10, 16, 24, 24, 80, 16, 112, 128, 180, 64, 384, 16, 160, 768, 256, 128, 1280, 64, 864, 768, 640, 32, 14336, 384, 160, 4096, 1536, 256, 23040, 128, 576, 2048, 1280, 768, 12288, 128, 640, 12288, 16128, 128, 61440, 32, 12288, 196608, 320, 512, 131072, 2048
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(2)=10 because 9^2-1 has divisors {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](9^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 9^Range[100]-1]
  • PARI
    a(n) = numdiv(9^n-1);

Formula

a(n) = sigma0(9^n-1) = A000005(A024101(n)).
a(n) = A366575(2*n) = A366575(n) * A366577(n) * (4 + A007814(n)) / (2 * (3 + A007814(n))). - Max Alekseyev, Jan 07 2024

A366577 Number of divisors of 3^n+1.

Original entry on oeis.org

2, 3, 4, 6, 4, 6, 8, 6, 8, 24, 12, 12, 8, 6, 16, 48, 4, 24, 16, 12, 8, 72, 16, 6, 64, 24, 16, 96, 16, 24, 48, 12, 4, 96, 16, 24, 16, 24, 16, 192, 32, 12, 128, 6, 32, 768, 16, 24, 16, 24, 128, 384, 16, 12, 32, 96, 64, 192, 16, 12, 128, 12, 32, 4608, 4, 24, 64
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=4 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,3^Range[0,100]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    a(n) = numdiv(3^n+1); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = sigma0(3^n+1) = A000005(A034472(n)).

A366602 Number of divisors of 4^n-1.

Original entry on oeis.org

2, 4, 6, 8, 8, 24, 8, 16, 32, 48, 16, 96, 8, 64, 96, 32, 8, 512, 8, 192, 144, 128, 16, 768, 128, 128, 160, 256, 64, 4608, 8, 128, 384, 128, 512, 8192, 32, 128, 192, 768, 32, 9216, 32, 1024, 4096, 512, 64, 6144, 32, 8192, 1536, 1024, 64, 10240, 3072, 2048, 384
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=8 because 4^4-1 has divisors {1, 3, 5, 15, 17, 51, 85, 255}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](4^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0,4^Range[100]-1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    a(n) = numdiv(4^n-1);

Formula

a(n) = sigma0(4^n-1) = A000005(A024036(n)).
a(n) = A046801(2*n) = A046798(n) * A046801(n). - Max Alekseyev, Jan 07 2024

A366633 Number of divisors of 7^n-1.

Original entry on oeis.org

4, 10, 12, 36, 8, 60, 16, 84, 64, 80, 16, 864, 8, 160, 96, 384, 16, 640, 16, 1536, 96, 160, 32, 16128, 32, 80, 1280, 1152, 32, 3840, 32, 1728, 384, 80, 128, 18432, 32, 160, 192, 14336, 32, 7680, 16, 4608, 2048, 160, 16, 147456, 256, 640, 768, 1152, 32, 25600
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(5)=8 because 7^5-1 has divisors {1, 2, 3, 6, 2801, 5602, 8403, 168061}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](7^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 7^Range[100]-1]
  • PARI
    a(n) = numdiv(7^n-1);

Formula

a(n) = sigma0(7^n-1) = A000005(A024075(n)).

A366612 Number of divisors of 5^n-1.

Original entry on oeis.org

3, 8, 6, 20, 12, 48, 6, 48, 24, 64, 6, 240, 6, 64, 96, 224, 12, 512, 24, 640, 48, 128, 12, 1152, 192, 64, 384, 320, 24, 6144, 12, 1024, 48, 128, 384, 10240, 24, 512, 48, 6144, 12, 18432, 12, 1280, 3072, 128, 6, 10752, 12, 4096, 192, 960, 24, 81920, 576, 1536
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=6 because 5^3-1 has divisors {1, 2, 4, 31, 62, 124}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 5^Range[100]-1]
  • PARI
    a(n) = numdiv(5^n-1);

Formula

a(n) = sigma0(5^n-1) = A000005(A024049(n)).

A366652 Number of divisors of 8^n-1.

Original entry on oeis.org

2, 6, 4, 24, 8, 32, 12, 96, 8, 96, 16, 512, 16, 144, 64, 768, 32, 160, 16, 4608, 96, 384, 16, 8192, 128, 192, 64, 9216, 64, 4096, 8, 6144, 256, 1536, 1536, 10240, 64, 384, 512, 73728, 32, 6144, 32, 24576, 1024, 384, 64, 262144, 64, 12288, 256, 147456, 256
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(5)=8 because 8^5-1 has divisors {1, 7, 31, 151, 217, 1057, 4681, 32767}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](8^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 8^Range[100]-1]
  • PARI
    a(n) = numdiv(8^n-1);

Formula

a(n) = sigma0(8^n-1) = A000005(A024088(n)).
a(n) = A046801(3*n). - Max Alekseyev, Jan 09 2024

A366576 Sum of the divisors of 3^n-1.

Original entry on oeis.org

3, 15, 42, 186, 399, 1680, 3282, 15876, 31836, 123690, 277344, 1541568, 2391486, 8992680, 25483332, 111757968, 193819392, 967814400, 1744488660, 9366647892, 16912999320, 62424587520, 144219337920, 852903426816, 1397135488896, 4766016364260, 12477973754400
Offset: 1

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=186 because 3^4-1 has divisors {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](3^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1,3^Range[30]-1] (* Paolo Xausa, Oct 15 2023 *)

Formula

a(n) = sigma(3^n-1) = A000203(A024023).
Showing 1-8 of 8 results.