cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A057952 Number of prime factors of 9^n - 1 (counted with multiplicity).

Original entry on oeis.org

3, 5, 5, 7, 6, 8, 5, 10, 8, 10, 7, 11, 5, 9, 11, 12, 8, 12, 7, 13, 11, 11, 6, 17, 10, 9, 13, 13, 9, 17, 8, 14, 12, 12, 11, 16, 8, 11, 15, 18, 8, 18, 6, 16, 19, 10, 10, 21, 12, 18, 15, 13, 8, 18, 15, 19, 15, 13, 7, 24, 7, 13, 19, 16, 12, 18, 8, 17, 15, 20, 9, 24, 9, 13, 22, 17, 13, 22
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A046051 (b=2), A057958 (b=3), A057957 (b=4), A057956 (b=5), A057955 (b=6), A057954 (b=7), A057953 (b=8), this sequence (b=9), A057951 (b=10), A366682 (b=11), A366708 (b=12).

Programs

  • Mathematica
    PrimeOmega[Table[9^n - 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

Mobius transform of A085034. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024101(n)) = A057958(2*n). - Amiram Eldar, Feb 02 2020
a(n) = A057941(n) + A057958(n). - Max Alekseyev, Jan 07 2024

A366663 a(n) = phi(9^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 32, 288, 2560, 26400, 165888, 2384928, 15728640, 141087744, 1246080000, 14758128000, 85996339200, 1270928131200, 8810420097024, 70207948800000, 677066362060800, 8218041445152000, 43129128265187328, 674757689572915200, 4238841176064000000
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), this sequence (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[9^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(9^n-1)}

Formula

a(n) = A295500(2*n) = 2 * A295500(n) * A366579(n). - Max Alekseyev, Jan 07 2024

A366621 Number of divisors of 6^n-1.

Original entry on oeis.org

2, 4, 4, 8, 6, 16, 4, 16, 16, 48, 8, 128, 8, 48, 48, 64, 32, 128, 8, 384, 16, 32, 32, 512, 32, 128, 64, 384, 4, 1536, 8, 512, 64, 256, 96, 8192, 64, 64, 64, 3072, 8, 768, 32, 512, 1536, 256, 16, 8192, 32, 512, 512, 2048, 16, 2048, 96, 12288, 128, 64, 16
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=8 because 6^4-1 has divisors {1, 5, 7, 35, 37, 185, 259, 1295}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](6^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 6^Range[100]-1]
  • PARI
    a(n) = numdiv(6^n-1);

Formula

a(n) = sigma0(6^n-1) = A000005(A024062(n)).

A366662 Sum of the divisors of 9^n-1.

Original entry on oeis.org

15, 186, 1680, 15876, 123690, 1541568, 8992680, 111757968, 967814400, 9366647892, 62424587520, 852903426816, 4766016364260, 55176998178240, 550081165885440, 4829754617483040, 31725040326819840, 471309320999516160, 2535353780263288800, 33995669076586206864
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(2)=186 because 9^2-1 has divisors {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](9^n-1):
    seq(a(n), n=1..30);
  • Mathematica
    DivisorSigma[1, 9^Range[30]-1]

Formula

a(n) = sigma(9^n-1) = A000203(A024101(n)).
a(n) = A366576(2*n) = A366576(n) * A366578(n) * (2^(4 + A007814(n)) - 1) / (2^(3 + A007814(n)) - 1) / 3. - Max Alekseyev, Jan 07 2024

A366602 Number of divisors of 4^n-1.

Original entry on oeis.org

2, 4, 6, 8, 8, 24, 8, 16, 32, 48, 16, 96, 8, 64, 96, 32, 8, 512, 8, 192, 144, 128, 16, 768, 128, 128, 160, 256, 64, 4608, 8, 128, 384, 128, 512, 8192, 32, 128, 192, 768, 32, 9216, 32, 1024, 4096, 512, 64, 6144, 32, 8192, 1536, 1024, 64, 10240, 3072, 2048, 384
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=8 because 4^4-1 has divisors {1, 3, 5, 15, 17, 51, 85, 255}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](4^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0,4^Range[100]-1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    a(n) = numdiv(4^n-1);

Formula

a(n) = sigma0(4^n-1) = A000005(A024036(n)).
a(n) = A046801(2*n) = A046798(n) * A046801(n). - Max Alekseyev, Jan 07 2024

A366633 Number of divisors of 7^n-1.

Original entry on oeis.org

4, 10, 12, 36, 8, 60, 16, 84, 64, 80, 16, 864, 8, 160, 96, 384, 16, 640, 16, 1536, 96, 160, 32, 16128, 32, 80, 1280, 1152, 32, 3840, 32, 1728, 384, 80, 128, 18432, 32, 160, 192, 14336, 32, 7680, 16, 4608, 2048, 160, 16, 147456, 256, 640, 768, 1152, 32, 25600
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(5)=8 because 7^5-1 has divisors {1, 2, 3, 6, 2801, 5602, 8403, 168061}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](7^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 7^Range[100]-1]
  • PARI
    a(n) = numdiv(7^n-1);

Formula

a(n) = sigma0(7^n-1) = A000005(A024075(n)).

A366660 Number of distinct prime divisors of 9^n - 1.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 3, 5, 6, 5, 5, 7, 3, 6, 8, 6, 6, 9, 5, 7, 8, 8, 4, 12, 7, 6, 11, 9, 7, 12, 6, 7, 10, 9, 8, 12, 6, 8, 12, 11, 6, 14, 4, 12, 16, 7, 8, 15, 10, 12, 13, 9, 6, 15, 11, 14, 13, 10, 5, 18, 5, 10, 16, 8, 9, 15, 6, 13, 13, 15, 7, 19, 7, 10, 19, 13, 11
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(9^n - 1), ", "))

Formula

a(n) = omega(9^n-1) = A001221(A024101(n)).
a(n) = A133801(2*n) = A133801(n) + A366580(n) - 1. - Max Alekseyev, Jan 07 2024

A366612 Number of divisors of 5^n-1.

Original entry on oeis.org

3, 8, 6, 20, 12, 48, 6, 48, 24, 64, 6, 240, 6, 64, 96, 224, 12, 512, 24, 640, 48, 128, 12, 1152, 192, 64, 384, 320, 24, 6144, 12, 1024, 48, 128, 384, 10240, 24, 512, 48, 6144, 12, 18432, 12, 1280, 3072, 128, 6, 10752, 12, 4096, 192, 960, 24, 81920, 576, 1536
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=6 because 5^3-1 has divisors {1, 2, 4, 31, 62, 124}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 5^Range[100]-1]
  • PARI
    a(n) = numdiv(5^n-1);

Formula

a(n) = sigma0(5^n-1) = A000005(A024049(n)).

A366652 Number of divisors of 8^n-1.

Original entry on oeis.org

2, 6, 4, 24, 8, 32, 12, 96, 8, 96, 16, 512, 16, 144, 64, 768, 32, 160, 16, 4608, 96, 384, 16, 8192, 128, 192, 64, 9216, 64, 4096, 8, 6144, 256, 1536, 1536, 10240, 64, 384, 512, 73728, 32, 6144, 32, 24576, 1024, 384, 64, 262144, 64, 12288, 256, 147456, 256
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(5)=8 because 8^5-1 has divisors {1, 7, 31, 151, 217, 1057, 4681, 32767}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](8^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 8^Range[100]-1]
  • PARI
    a(n) = numdiv(8^n-1);

Formula

a(n) = sigma0(8^n-1) = A000005(A024088(n)).
a(n) = A046801(3*n). - Max Alekseyev, Jan 09 2024

A366575 Number of divisors of 3^n - 1.

Original entry on oeis.org

2, 4, 4, 10, 6, 16, 4, 24, 8, 24, 8, 80, 4, 16, 24, 112, 8, 128, 8, 180, 16, 64, 8, 384, 24, 16, 64, 160, 16, 768, 16, 256, 32, 128, 48, 1280, 8, 64, 96, 864, 16, 768, 8, 640, 384, 32, 32, 14336, 128, 384, 64, 160, 16, 4096, 128, 1536, 128, 256, 8, 23040, 8
Offset: 1

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=10 because 3^4-1 has divisors {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](3^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0,3^Range[100]-1] (* Paolo Xausa, Oct 15 2023 *)

Formula

a(n) = sigma0(3^n-1) = A000005(A024023).
Showing 1-10 of 11 results. Next