cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A366579 a(n) = phi(3^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 4, 12, 40, 120, 288, 1092, 3072, 7776, 23600, 87120, 259200, 797160, 1847104, 5832000, 21523360, 63672480, 152845056, 580921200, 1700870400, 4368821184, 12550120000, 47071589412, 130459631616, 413939700000, 997562438080, 3012122557440, 11159367815680
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(3^n+1)}

Formula

a(n) = phi(3^n+1) = A000010(A034472(n)).

A366580 Number of distinct prime divisors of 3^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 2, 3, 4, 3, 3, 3, 2, 4, 5, 2, 4, 4, 3, 3, 5, 4, 2, 6, 4, 4, 6, 4, 4, 5, 3, 2, 6, 4, 4, 4, 4, 4, 7, 5, 3, 7, 2, 5, 9, 4, 4, 4, 4, 6, 8, 4, 3, 5, 6, 6, 7, 4, 3, 7, 3, 5, 11, 2, 4, 6, 3, 5, 8, 8, 6, 8, 3, 5, 11, 6, 5, 7, 4, 5, 11, 5, 5, 10, 8
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[3^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(3^n + 1), ", "))

Formula

a(n) = omega(3^n+1) = A001221(A034472(n)).

A366662 Sum of the divisors of 9^n-1.

Original entry on oeis.org

15, 186, 1680, 15876, 123690, 1541568, 8992680, 111757968, 967814400, 9366647892, 62424587520, 852903426816, 4766016364260, 55176998178240, 550081165885440, 4829754617483040, 31725040326819840, 471309320999516160, 2535353780263288800, 33995669076586206864
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(2)=186 because 9^2-1 has divisors {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](9^n-1):
    seq(a(n), n=1..30);
  • Mathematica
    DivisorSigma[1, 9^Range[30]-1]

Formula

a(n) = sigma(9^n-1) = A000203(A024101(n)).
a(n) = A366576(2*n) = A366576(n) * A366578(n) * (2^(4 + A007814(n)) - 1) / (2^(3 + A007814(n)) - 1) / 3. - Max Alekseyev, Jan 07 2024

A366666 Sum of the divisors of 9^n+1.

Original entry on oeis.org

3, 18, 126, 1332, 10476, 109926, 816732, 8906760, 64570086, 706911048, 5357742012, 56496274632, 456919958880, 4661686010664, 35152280388792, 388532214509688, 2779530283277766, 30018958465575240, 230668806145962744, 2431533550553980488, 19410628990783168944
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(2)=126 because 9^2+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](9^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 9^Range[0,20] + 1] (* Paul F. Marrero Romero, Nov 14 2023 *)

Formula

a(n) = sigma(9^n+1) = A000203(A062396(n)).
a(n) = A366578(2*n). - Max Alekseyev, Jan 08 2024

A366577 Number of divisors of 3^n+1.

Original entry on oeis.org

2, 3, 4, 6, 4, 6, 8, 6, 8, 24, 12, 12, 8, 6, 16, 48, 4, 24, 16, 12, 8, 72, 16, 6, 64, 24, 16, 96, 16, 24, 48, 12, 4, 96, 16, 24, 16, 24, 16, 192, 32, 12, 128, 6, 32, 768, 16, 24, 16, 24, 128, 384, 16, 12, 32, 96, 64, 192, 16, 12, 128, 12, 32, 4608, 4, 24, 64
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=4 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,3^Range[0,100]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    a(n) = numdiv(3^n+1); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = sigma0(3^n+1) = A000005(A034472(n)).

A366607 Sum of the divisors of 4^n+1.

Original entry on oeis.org

3, 6, 18, 84, 258, 1302, 4356, 20520, 65538, 351120, 1110276, 5048232, 17041416, 82623888, 284225796, 1494039792, 4301668356, 20788904016, 73234343952, 332019460560, 1103789883396, 5936210280000, 18679788287496, 84884999116320, 282937726148616
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=84 because 4^3+1 has divisors {1, 5, 13, 65}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](4^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1,4^Range[0,30]+1] (* Paolo Xausa, Oct 14 2023 *)
  • Python
    from sympy import divisor_sigma
    def A366607(n): return divisor_sigma((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = sigma(4^n+1) = A000203(A052539(n)).
a(n) = A069061(2*n). - Max Alekseyev, Jan 08 2024

A366629 Sum of the divisors of 6^n+1.

Original entry on oeis.org

3, 8, 38, 256, 1298, 9792, 52136, 338580, 1778436, 11889152, 62367272, 414625216, 2178461956, 15224775552, 80673299432, 611106029568, 2830769440776, 19344856702976, 115255634181184, 696800841097536, 3748220725527432, 27388329197137920, 135183433256806480
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=256 because 6^3+1 has divisors {1, 7, 31, 217}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](6^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 6^Range[0, 30] + 1] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = sigma(6^n+1) = A000203(A062394(n)).

A366638 Sum of the divisors of 7^n+1.

Original entry on oeis.org

3, 15, 93, 660, 3606, 34560, 236964, 1559520, 9155916, 77423280, 530807472, 3868683120, 21224771760, 185094572580, 1261494915594, 9988783073280, 49990612274316, 436182213726030, 3279858902194056, 21372989348391720, 122709716651985624, 1082323574100172800
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=3606 because 7^4+1 has divisors {1, 2, 1201, 2402}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](7^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 7^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 16 2023 *)

Formula

a(n) = sigma(7^n+1) = A000203(A034491(n)).

A366617 Sum of the divisors of 5^n+1.

Original entry on oeis.org

3, 12, 42, 312, 942, 6264, 25284, 162000, 620460, 4961280, 16161768, 103442688, 367381884, 2441936064, 9859525284, 76963663296, 228970112844, 1526377433328, 6339280635408, 38199227335200, 144103649734968, 1285221510144000, 3894650946433800, 24349131482713344
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=312 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 5^Range[0, 30] + 1] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = sigma(5^n+1) = A000203(A034474(n)).

A366657 Sum of the divisors of 8^n+1.

Original entry on oeis.org

3, 13, 84, 800, 4356, 51792, 351120, 3100240, 17041416, 211053040, 1494039792, 12611914848, 73234343952, 794382536272, 5936210280000, 60037292774400, 282937726148616, 3264911394064320, 24128875076496960, 208532141890460960, 1225825603154905104
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=4356 because 8^4+1 has divisors {1, 17, 241, 4097}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](8^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 8^Range[0,20]+1] (* Paul F. Marrero Romero, Nov 19 2023 *)

Formula

a(n) = sigma(8^n+1) = A000203(A062395(n)).
a(n) = A069061(3*n). - Max Alekseyev, Jan 09 2024
Showing 1-10 of 10 results.