cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A366684 Sum of the divisors of 11^n-1.

Original entry on oeis.org

18, 360, 2880, 46128, 299646, 7113600, 35893440, 686393568, 5105934720, 80436972240, 513593801496, 14266630210560, 62197735384584, 1165770116121600, 9349887314805120, 157025981601707904, 909804651298728804, 22898038082582016000, 110086362807146183340
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			a(3)=2880 because 11^3-1 has divisors {1, 2, 5, 7, 10, 14, 19, 35, 38, 70, 95, 133, 190, 266, 665, 1330}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](11^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 11^Range[30]-1]

Formula

a(n) = sigma(11^n-1) = A000203(A024127(n)).

A366689 Sum of the divisors of 11^n+1.

Original entry on oeis.org

3, 28, 186, 3458, 21966, 375816, 2911272, 45470096, 340452396, 6278429920, 39543942612, 706019328000, 4708961513592, 82162955169792, 599236951715280, 11195197038864384, 68925937595777100, 1179397832668228992, 9136813499663186064, 144079834776308121600
Offset: 0

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			a(4)=21966 because 11^4+1 has divisors {1, 2, 7321, 14642}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](11^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1,11^Range[0,20]+1] (* Harvey P. Dale, Jun 22 2025 *)

Formula

a(n) = sigma(11^n+1) = A000203(A034524(n)).

A366607 Sum of the divisors of 4^n+1.

Original entry on oeis.org

3, 6, 18, 84, 258, 1302, 4356, 20520, 65538, 351120, 1110276, 5048232, 17041416, 82623888, 284225796, 1494039792, 4301668356, 20788904016, 73234343952, 332019460560, 1103789883396, 5936210280000, 18679788287496, 84884999116320, 282937726148616
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=84 because 4^3+1 has divisors {1, 5, 13, 65}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](4^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1,4^Range[0,30]+1] (* Paolo Xausa, Oct 14 2023 *)
  • Python
    from sympy import divisor_sigma
    def A366607(n): return divisor_sigma((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = sigma(4^n+1) = A000203(A052539(n)).
a(n) = A069061(2*n). - Max Alekseyev, Jan 08 2024

A366667 a(n) = phi(9^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 40, 288, 3072, 23600, 259200, 1847104, 21523360, 152845056, 1700870400, 12550120000, 130459631616, 997562438080, 11159367815680, 81159501312000, 926510094425920, 6670865700716544, 73205598106368000, 540340585126398016, 5691215305506816000
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[9^Range[0, 20] + 1] (* Paul F. Marrero Romero, Nov 04 2023 *)
  • PARI
    {a(n) = eulerphi(9^n+1)}

Formula

a(n) = A000010(A062396(n)). - Paul F. Marrero Romero, Nov 04 2023
a(n) = A366579(2*n). - Max Alekseyev, Jan 08 2024

A366629 Sum of the divisors of 6^n+1.

Original entry on oeis.org

3, 8, 38, 256, 1298, 9792, 52136, 338580, 1778436, 11889152, 62367272, 414625216, 2178461956, 15224775552, 80673299432, 611106029568, 2830769440776, 19344856702976, 115255634181184, 696800841097536, 3748220725527432, 27388329197137920, 135183433256806480
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=256 because 6^3+1 has divisors {1, 7, 31, 217}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](6^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 6^Range[0, 30] + 1] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = sigma(6^n+1) = A000203(A062394(n)).

A366638 Sum of the divisors of 7^n+1.

Original entry on oeis.org

3, 15, 93, 660, 3606, 34560, 236964, 1559520, 9155916, 77423280, 530807472, 3868683120, 21224771760, 185094572580, 1261494915594, 9988783073280, 49990612274316, 436182213726030, 3279858902194056, 21372989348391720, 122709716651985624, 1082323574100172800
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=3606 because 7^4+1 has divisors {1, 2, 1201, 2402}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](7^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 7^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 16 2023 *)

Formula

a(n) = sigma(7^n+1) = A000203(A034491(n)).

A366617 Sum of the divisors of 5^n+1.

Original entry on oeis.org

3, 12, 42, 312, 942, 6264, 25284, 162000, 620460, 4961280, 16161768, 103442688, 367381884, 2441936064, 9859525284, 76963663296, 228970112844, 1526377433328, 6339280635408, 38199227335200, 144103649734968, 1285221510144000, 3894650946433800, 24349131482713344
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=312 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 5^Range[0, 30] + 1] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = sigma(5^n+1) = A000203(A034474(n)).

A366657 Sum of the divisors of 8^n+1.

Original entry on oeis.org

3, 13, 84, 800, 4356, 51792, 351120, 3100240, 17041416, 211053040, 1494039792, 12611914848, 73234343952, 794382536272, 5936210280000, 60037292774400, 282937726148616, 3264911394064320, 24128875076496960, 208532141890460960, 1225825603154905104
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=4356 because 8^4+1 has divisors {1, 17, 241, 4097}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](8^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 8^Range[0,20]+1] (* Paul F. Marrero Romero, Nov 19 2023 *)

Formula

a(n) = sigma(8^n+1) = A000203(A062395(n)).
a(n) = A069061(3*n). - Max Alekseyev, Jan 09 2024

A366664 Number of distinct prime divisors of 9^n + 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 2, 4, 3, 4, 6, 4, 4, 5, 2, 4, 4, 4, 5, 7, 5, 4, 4, 6, 4, 5, 6, 4, 7, 5, 2, 6, 5, 8, 8, 5, 6, 7, 5, 5, 10, 7, 6, 8, 4, 4, 6, 9, 6, 8, 7, 6, 9, 7, 9, 9, 5, 3, 11, 6, 4, 11, 6, 7, 9, 9, 7, 6, 9, 5, 6, 6, 6, 11, 4, 8, 7, 5, 4, 7, 5, 5, 11
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[9^Range[0,90]+1] (* Harvey P. Dale, Jul 04 2024 *)
  • PARI
    for(n = 0, 100, print1(omega(9^n + 1), ", "))

Formula

a(n) = omega(9^n+1) = A001221(A062396(n)).
a(n) = A366580(2*n). - Max Alekseyev, Jan 08 2024

A366665 Number of divisors of 9^n+1.

Original entry on oeis.org

2, 4, 4, 8, 8, 12, 8, 16, 4, 16, 8, 16, 64, 16, 16, 48, 4, 16, 16, 16, 32, 128, 32, 16, 16, 128, 16, 32, 64, 16, 128, 32, 4, 64, 32, 384, 256, 32, 64, 128, 32, 32, 1024, 128, 64, 384, 16, 16, 64, 512, 64, 256, 128, 64, 512, 192, 512, 512, 32, 8, 2048, 64, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(2)=4 because 9^2+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](9^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 9^Range[0,62] + 1] (* Paul F. Marrero Romero, Nov 13 2023 *)
  • PARI
    a(n) = numdiv(9^n+1);

Formula

a(n) = sigma0(9^n+1) = A000005(A062396(n)).
a(n) = A366577(2*n). - Max Alekseyev, Jan 08 2024
Showing 1-10 of 11 results. Next