cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A366666 Sum of the divisors of 9^n+1.

Original entry on oeis.org

3, 18, 126, 1332, 10476, 109926, 816732, 8906760, 64570086, 706911048, 5357742012, 56496274632, 456919958880, 4661686010664, 35152280388792, 388532214509688, 2779530283277766, 30018958465575240, 230668806145962744, 2431533550553980488, 19410628990783168944
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(2)=126 because 9^2+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](9^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 9^Range[0,20] + 1] (* Paul F. Marrero Romero, Nov 14 2023 *)

Formula

a(n) = sigma(9^n+1) = A000203(A062396(n)).
a(n) = A366578(2*n). - Max Alekseyev, Jan 08 2024

A366667 a(n) = phi(9^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 40, 288, 3072, 23600, 259200, 1847104, 21523360, 152845056, 1700870400, 12550120000, 130459631616, 997562438080, 11159367815680, 81159501312000, 926510094425920, 6670865700716544, 73205598106368000, 540340585126398016, 5691215305506816000
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[9^Range[0, 20] + 1] (* Paul F. Marrero Romero, Nov 04 2023 *)
  • PARI
    {a(n) = eulerphi(9^n+1)}

Formula

a(n) = A000010(A062396(n)). - Paul F. Marrero Romero, Nov 04 2023
a(n) = A366579(2*n). - Max Alekseyev, Jan 08 2024

A366605 Number of distinct prime divisors of 4^n + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 3, 4, 2, 5, 2, 4, 4, 4, 2, 6, 3, 5, 3, 5, 3, 6, 3, 3, 4, 5, 2, 6, 3, 6, 5, 5, 4, 9, 3, 5, 5, 5, 4, 10, 2, 4, 3, 6, 6, 9, 2, 4, 6, 6, 5, 8, 3, 7, 6, 6, 4, 10, 2, 9, 7, 6, 4, 8, 4, 6, 7, 5, 2, 12, 4, 9, 5, 4, 4, 10, 4, 6, 8, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[4^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(4^n + 1), ", "))
    
  • Python
    from sympy import primenu
    def A366605(n): return primenu((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = omega(4^n+1) = A001221(A052539(n)).
a(n) = A046799(2*n). - Max Alekseyev, Jan 08 2024

A366655 Number of distinct prime divisors of 8^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 3, 3, 5, 4, 4, 3, 6, 5, 3, 5, 6, 4, 4, 5, 6, 4, 5, 6, 9, 6, 5, 4, 10, 4, 3, 7, 9, 10, 6, 6, 8, 5, 6, 6, 10, 5, 7, 9, 8, 6, 7, 6, 12, 9, 5, 5, 10, 10, 8, 6, 8, 7, 8, 3, 9, 10, 4, 10, 12, 7, 8, 6, 14, 7, 8, 5, 10, 10, 8, 11, 16, 5, 7, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 0, 100, print1(omega(8^n + 1), ", "))

Formula

a(n) = omega(8^n+1) = A001221(A062395(n)).
a(n) = A046799(3*n). - Max Alekseyev, Jan 09 2024

A366615 Number of distinct prime divisors of 5^n + 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 3, 6, 3, 4, 5, 5, 4, 8, 4, 4, 4, 5, 4, 7, 3, 4, 7, 5, 4, 8, 6, 7, 6, 5, 4, 7, 5, 6, 6, 6, 3, 8, 3, 5, 5, 7, 7, 9, 5, 5, 6, 7, 7, 8, 3, 6, 6, 6, 4, 13, 4, 8, 7, 3, 7, 8, 7, 5, 6, 5, 5, 12, 5, 9, 9, 6, 6, 10, 6, 5, 7, 9
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[5^n+1],{n,0,90}] (* Harvey P. Dale, Apr 06 2025 *)
  • PARI
    for(n = 0, 100, print1(omega(5^n + 1), ", "))

Formula

a(n) = omega(5^n+1) = A001221(A034474(n)).

A366627 Number of distinct prime divisors of 6^n + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 3, 2, 3, 3, 2, 2, 4, 3, 5, 3, 3, 6, 3, 3, 5, 4, 3, 4, 4, 4, 5, 5, 4, 9, 2, 3, 6, 3, 10, 5, 4, 3, 9, 5, 4, 7, 2, 3, 7, 5, 2, 7, 5, 6, 8, 4, 5, 10, 7, 6, 7, 3, 2, 6, 3, 2, 9, 3, 8, 11, 5, 5, 6, 7, 4, 5, 6, 4, 10, 5, 5, 10, 6, 6, 8, 4, 5, 8
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[6^Range[0,84] + 1] (* Paul F. Marrero Romero, Nov 11 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(6^n + 1), ", "))

Formula

a(n) = omega(6^n+1) = A001221(A062394(n)).

A366636 Number of distinct prime divisors of 7^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 3, 3, 4, 3, 5, 3, 3, 5, 3, 2, 5, 3, 4, 6, 5, 2, 4, 4, 4, 4, 6, 2, 8, 4, 4, 6, 5, 9, 8, 3, 3, 7, 6, 5, 6, 8, 5, 10, 6, 2, 6, 10, 8, 6, 5, 5, 8, 10, 8, 7, 6, 5, 9, 2, 5, 12, 4, 7, 11, 4, 5, 6, 8, 3, 9, 4, 3, 9, 7, 10, 8, 5, 6, 8, 5, 3, 12
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[7^Range[0,84] + 1] (* Paul F. Marrero Romero, Nov 11 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(7^n + 1), ", "))

Formula

a(n) = omega(7^n+1) = A001221(A034491(n)).

A366665 Number of divisors of 9^n+1.

Original entry on oeis.org

2, 4, 4, 8, 8, 12, 8, 16, 4, 16, 8, 16, 64, 16, 16, 48, 4, 16, 16, 16, 32, 128, 32, 16, 16, 128, 16, 32, 64, 16, 128, 32, 4, 64, 32, 384, 256, 32, 64, 128, 32, 32, 1024, 128, 64, 384, 16, 16, 64, 512, 64, 256, 128, 64, 512, 192, 512, 512, 32, 8, 2048, 64, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(2)=4 because 9^2+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](9^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 9^Range[0,62] + 1] (* Paul F. Marrero Romero, Nov 13 2023 *)
  • PARI
    a(n) = numdiv(9^n+1);

Formula

a(n) = sigma0(9^n+1) = A000005(A062396(n)).
a(n) = A366577(2*n). - Max Alekseyev, Jan 08 2024
Showing 1-8 of 8 results.