cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A366605 Number of distinct prime divisors of 4^n + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 3, 4, 2, 5, 2, 4, 4, 4, 2, 6, 3, 5, 3, 5, 3, 6, 3, 3, 4, 5, 2, 6, 3, 6, 5, 5, 4, 9, 3, 5, 5, 5, 4, 10, 2, 4, 3, 6, 6, 9, 2, 4, 6, 6, 5, 8, 3, 7, 6, 6, 4, 10, 2, 9, 7, 6, 4, 8, 4, 6, 7, 5, 2, 12, 4, 9, 5, 4, 4, 10, 4, 6, 8, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[4^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(4^n + 1), ", "))
    
  • Python
    from sympy import primenu
    def A366605(n): return primenu((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = omega(4^n+1) = A001221(A052539(n)).
a(n) = A046799(2*n). - Max Alekseyev, Jan 08 2024

A366618 a(n) = phi(5^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 12, 36, 312, 1040, 7200, 25088, 183808, 557928, 4396800, 15333120, 121680000, 406812744, 2817007200, 8558784000, 76264519680, 254230063200, 1710194342400, 6349120596480, 47334145996800, 127169887444992, 1088029470747648, 3889097389599864
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[5^Range[0,30]+1] (* Harvey P. Dale, Jun 07 2025 *)
  • PARI
    {a(n) = eulerphi(5^n+1)}

A366655 Number of distinct prime divisors of 8^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 3, 3, 5, 4, 4, 3, 6, 5, 3, 5, 6, 4, 4, 5, 6, 4, 5, 6, 9, 6, 5, 4, 10, 4, 3, 7, 9, 10, 6, 6, 8, 5, 6, 6, 10, 5, 7, 9, 8, 6, 7, 6, 12, 9, 5, 5, 10, 10, 8, 6, 8, 7, 8, 3, 9, 10, 4, 10, 12, 7, 8, 6, 14, 7, 8, 5, 10, 10, 8, 11, 16, 5, 7, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 0, 100, print1(omega(8^n + 1), ", "))

Formula

a(n) = omega(8^n+1) = A001221(A062395(n)).
a(n) = A046799(3*n). - Max Alekseyev, Jan 09 2024

A366616 Number of divisors of 5^n+1.

Original entry on oeis.org

2, 4, 4, 12, 4, 8, 8, 16, 8, 32, 16, 32, 8, 16, 8, 96, 8, 16, 32, 32, 16, 576, 16, 16, 16, 32, 24, 320, 8, 16, 128, 32, 16, 384, 64, 128, 64, 32, 16, 192, 32, 64, 64, 64, 8, 512, 8, 32, 32, 128, 128, 768, 32, 32, 64, 128, 128, 384, 8, 64, 64, 64, 16, 24576, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=12 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 5^Range[0, 70] + 1] (* Paolo Xausa, Apr 20 2025 *)
  • PARI
    a(n) = numdiv(5^n+1);

Formula

a(n) = sigma0(5^n+1) = A000005(A034474(n)).

A366617 Sum of the divisors of 5^n+1.

Original entry on oeis.org

3, 12, 42, 312, 942, 6264, 25284, 162000, 620460, 4961280, 16161768, 103442688, 367381884, 2441936064, 9859525284, 76963663296, 228970112844, 1526377433328, 6339280635408, 38199227335200, 144103649734968, 1285221510144000, 3894650946433800, 24349131482713344
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=312 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 5^Range[0, 30] + 1] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = sigma(5^n+1) = A000203(A034474(n)).

A366627 Number of distinct prime divisors of 6^n + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 3, 2, 3, 3, 2, 2, 4, 3, 5, 3, 3, 6, 3, 3, 5, 4, 3, 4, 4, 4, 5, 5, 4, 9, 2, 3, 6, 3, 10, 5, 4, 3, 9, 5, 4, 7, 2, 3, 7, 5, 2, 7, 5, 6, 8, 4, 5, 10, 7, 6, 7, 3, 2, 6, 3, 2, 9, 3, 8, 11, 5, 5, 6, 7, 4, 5, 6, 4, 10, 5, 5, 10, 6, 6, 8, 4, 5, 8
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[6^Range[0,84] + 1] (* Paul F. Marrero Romero, Nov 11 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(6^n + 1), ", "))

Formula

a(n) = omega(6^n+1) = A001221(A062394(n)).

A366636 Number of distinct prime divisors of 7^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 3, 3, 4, 3, 5, 3, 3, 5, 3, 2, 5, 3, 4, 6, 5, 2, 4, 4, 4, 4, 6, 2, 8, 4, 4, 6, 5, 9, 8, 3, 3, 7, 6, 5, 6, 8, 5, 10, 6, 2, 6, 10, 8, 6, 5, 5, 8, 10, 8, 7, 6, 5, 9, 2, 5, 12, 4, 7, 11, 4, 5, 6, 8, 3, 9, 4, 3, 9, 7, 10, 8, 5, 6, 8, 5, 3, 12
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[7^Range[0,84] + 1] (* Paul F. Marrero Romero, Nov 11 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(7^n + 1), ", "))

Formula

a(n) = omega(7^n+1) = A001221(A034491(n)).

A366664 Number of distinct prime divisors of 9^n + 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 2, 4, 3, 4, 6, 4, 4, 5, 2, 4, 4, 4, 5, 7, 5, 4, 4, 6, 4, 5, 6, 4, 7, 5, 2, 6, 5, 8, 8, 5, 6, 7, 5, 5, 10, 7, 6, 8, 4, 4, 6, 9, 6, 8, 7, 6, 9, 7, 9, 9, 5, 3, 11, 6, 4, 11, 6, 7, 9, 9, 7, 6, 9, 5, 6, 6, 6, 11, 4, 8, 7, 5, 4, 7, 5, 5, 11
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[9^Range[0,90]+1] (* Harvey P. Dale, Jul 04 2024 *)
  • PARI
    for(n = 0, 100, print1(omega(9^n + 1), ", "))

Formula

a(n) = omega(9^n+1) = A001221(A062396(n)).
a(n) = A366580(2*n). - Max Alekseyev, Jan 08 2024
Showing 1-8 of 8 results.