cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A366716 a(n) = phi(12^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 12, 112, 1296, 20416, 229680, 2306304, 32916240, 400515072, 3863116800, 47825825600, 685853880624, 8732596764672, 97509650382144, 990242755633152, 11148606564480000, 184883057981234176, 2047145911595946000, 20281543142263603200, 294779525244632305920
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[12^Range[0,19] + 1] (* Paul F. Marrero Romero, Oct 27 2023 *)
  • PARI
    {a(n) = eulerphi(12^n+1)}

Formula

a(n) = A000010(A178248(n)). - Paul F. Marrero Romero, Oct 27 2023

A366608 a(n) = phi(4^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 16, 48, 256, 800, 3840, 12544, 65536, 186624, 986880, 3345408, 16515072, 52306176, 252645120, 760320000, 4288266240, 13628740608, 64258375680, 218462552064, 1095233372160, 3105655160832, 16510446886912, 56000724240384, 280012271910912, 869940000000000
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[4^Range[0,30]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    {a(n) = eulerphi(4^n+1)}
    
  • Python
    from sympy import totient
    def A366608(n): return totient((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = A053285(2*n). - Max Alekseyev, Jan 08 2024

A366686 Number of distinct prime divisors of 11^n + 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 3, 6, 4, 5, 5, 6, 3, 5, 5, 6, 4, 5, 4, 6, 7, 5, 3, 6, 6, 5, 6, 6, 4, 11, 6, 9, 7, 4, 4, 9, 5, 5, 9, 4, 6, 10, 6, 6, 5, 7, 6, 9, 3, 6, 9, 12, 7, 10, 6, 6, 8, 5, 4, 10, 3, 9, 8, 8, 7, 12, 8, 5, 10, 7, 8, 11, 6, 11, 11, 6, 10, 9, 5
Offset: 0

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 0, 100, print1(omega(11^n + 1), ", "))

Formula

a(n) = omega(11^n+1) = A001221(A034524(n)).

A366689 Sum of the divisors of 11^n+1.

Original entry on oeis.org

3, 28, 186, 3458, 21966, 375816, 2911272, 45470096, 340452396, 6278429920, 39543942612, 706019328000, 4708961513592, 82162955169792, 599236951715280, 11195197038864384, 68925937595777100, 1179397832668228992, 9136813499663186064, 144079834776308121600
Offset: 0

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			a(4)=21966 because 11^4+1 has divisors {1, 2, 7321, 14642}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](11^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1,11^Range[0,20]+1] (* Harvey P. Dale, Jun 22 2025 *)

Formula

a(n) = sigma(11^n+1) = A000203(A034524(n)).

A366630 a(n) = phi(6^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 36, 180, 1296, 6000, 41472, 230496, 1580800, 8359200, 58579200, 310968900, 2175102720, 10971642240, 76065091200, 351048600000, 2811459796992, 14508487949472, 88870766837760, 522016066337712, 3564233663616000, 17479898551382400, 128060205344805888
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[6^Range[0, 22] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(6^n+1)}

Formula

a(n) = A000010(A062394(n)). - Paul F. Marrero Romero, Oct 17 2023

A366667 a(n) = phi(9^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 40, 288, 3072, 23600, 259200, 1847104, 21523360, 152845056, 1700870400, 12550120000, 130459631616, 997562438080, 11159367815680, 81159501312000, 926510094425920, 6670865700716544, 73205598106368000, 540340585126398016, 5691215305506816000
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[9^Range[0, 20] + 1] (* Paul F. Marrero Romero, Nov 04 2023 *)
  • PARI
    {a(n) = eulerphi(9^n+1)}

Formula

a(n) = A000010(A062396(n)). - Paul F. Marrero Romero, Nov 04 2023
a(n) = A366579(2*n). - Max Alekseyev, Jan 08 2024

A366688 Number of divisors of 11^n+1.

Original entry on oeis.org

2, 6, 4, 18, 4, 12, 16, 12, 8, 48, 8, 96, 16, 48, 32, 144, 8, 48, 32, 96, 16, 72, 16, 96, 128, 48, 8, 240, 64, 48, 64, 96, 16, 4608, 64, 1152, 128, 24, 16, 1152, 32, 48, 512, 24, 64, 3072, 64, 96, 32, 192, 64, 1152, 8, 96, 512, 6144, 128, 2304, 64, 96, 256, 48
Offset: 0

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			a(4)=4 because 11^4+1 has divisors {1, 2, 7321, 14642}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](11^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,11^Range[0,70]+1] (* Harvey P. Dale, Mar 17 2025 *)
  • PARI
    a(n) = numdiv(11^n+1);

Formula

a(n) = sigma0(11^n+1) = A000005(A034524(n)).

A366618 a(n) = phi(5^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 12, 36, 312, 1040, 7200, 25088, 183808, 557928, 4396800, 15333120, 121680000, 406812744, 2817007200, 8558784000, 76264519680, 254230063200, 1710194342400, 6349120596480, 47334145996800, 127169887444992, 1088029470747648, 3889097389599864
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[5^Range[0,30]+1] (* Harvey P. Dale, Jun 07 2025 *)
  • PARI
    {a(n) = eulerphi(5^n+1)}

A366639 a(n) = phi(7^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 20, 168, 1200, 7600, 43200, 407680, 2712832, 19707408, 112560000, 945677920, 6768230400, 47530457728, 271289229120, 2096760960000, 16569393144832, 116315256993600, 597938524646400, 5699431359135360, 38890647857280000, 270061302781670400
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[7^Range[0,21] + 1] (* Paul F. Marrero Romero, Nov 05 2023 *)
  • PARI
    {a(n) = eulerphi(7^n+1)}

Formula

a(n) = A000010(A034491(n)). - Paul F. Marrero Romero, Nov 06 2023

A366658 a(n) = phi(8^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 48, 324, 3840, 19800, 186624, 1365336, 16515072, 84768120, 760320000, 5632621632, 64258375680, 366369658200, 3105655160832, 20140520400000, 280012271910912, 1495522910085120, 12824556668190720, 95907982079387520, 1080582572777472000, 5688765822212629632
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[8^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(8^n+1)}
    
  • Python
    from sympy import totient
    def A366658(n): return totient((1<<3*n)+1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = A000010(A062395(n)). - Paul F. Marrero Romero, Nov 06 2023
a(n) = A053285(3*n). - Max Alekseyev, Jan 09 2024
Showing 1-10 of 12 results. Next