A367135
E.g.f. satisfies A(x) = 1/(2 - exp(x*A(x)^3)).
Original entry on oeis.org
1, 1, 9, 166, 4719, 182326, 8927301, 529922002, 36988772211, 2969132797966, 269488306924833, 27291375956851546, 3050923148547318039, 373187615576953777510, 49580088565083198922845, 7109665420655116517351458, 1094492388113416460752513851
Offset: 0
-
Table[1/(3*n+1)! * Sum[(3*n+k)! * StirlingS2[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 07 2023 *)
-
a(n) = sum(k=0, n, (3*n+k)!*stirling(n, k, 2))/(3*n+1)!;
A367138
E.g.f. satisfies A(x) = 1/(1 + log(1 - x*A(x)^2)).
Original entry on oeis.org
1, 1, 7, 98, 2096, 60684, 2221766, 98488592, 5129567208, 307066395000, 20775900638472, 1567955813868960, 130596146677118448, 11899839375083061024, 1177540373453616858240, 125754589311488009416704, 14416305655742615673941760, 1765794816084642802179333120
Offset: 0
-
Table[1/(2*n+1)! * Sum[(2*n+k)! * Abs[StirlingS1[n,k]], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 07 2023 *)
-
a(n) = sum(k=0, n, (2*n+k)!*abs(stirling(n, k, 1)))/(2*n+1)!;
A376393
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + log(1-x))^3 ).
Original entry on oeis.org
1, 3, 33, 669, 20130, 808902, 40799514, 2480325810, 176637134184, 14428585258896, 1330156753687152, 136632403748954088, 15476220160149512160, 1916493979349783418192, 257601843144279267685056, 37352685483321694825767120, 5812026059839341212943591168, 965974072760231560672817681280
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+log(1-x))^3)/x))
-
a(n) = 3*sum(k=0, n, (3*n+k+2)!*abs(stirling(n, k, 1)))/(3*n+3)!;
A367137
E.g.f. satisfies A(x) = 1/(1 - log(1 + x*A(x)^3)).
Original entry on oeis.org
1, 1, 7, 101, 2248, 68024, 2608940, 121316796, 6633841608, 417181294704, 29665022908992, 2353675598751960, 206145540193974288, 19755830347828845360, 2056381966404400741920, 231034314706671715165824, 27865886237401381188422400, 3591366670194210901813749120
Offset: 0
-
Table[1/(3*n+1)! * Sum[(3*n+k)! * StirlingS1[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 07 2023 *)
-
a(n) = sum(k=0, n, (3*n+k)!*stirling(n, k, 1))/(3*n+1)!;
A377323
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x).
Original entry on oeis.org
1, 1, 5, 53, 884, 20234, 589834, 20903700, 872660256, 41944510752, 2281437791448, 138539360885760, 9290720296262976, 681965664411820944, 54384461861952738528, 4682101594725064872768, 432815761314471190599936, 42757813607285233998385920, 4495579313771176952867958528
Offset: 0
-
a(n) = sum(k=0, n, (3*n-k)!/(3*n-2*k+1)!*abs(stirling(n, k, 1)));
A377327
E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)^3).
Original entry on oeis.org
1, 1, 11, 251, 8858, 425534, 25928068, 1916213928, 166580610504, 16657218047328, 1883646389742624, 237695994684785592, 33113333472295201536, 5047818696187818951984, 835818979837614364874496, 149383091745519898076484480, 28663410267058615074689247360, 5877004345535507714104006175616
Offset: 0
-
a(n) = sum(k=0, n, (3*n+2*k)!/(3*n+k+1)!*abs(stirling(n, k, 1)));
A377350
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x)^3.
Original entry on oeis.org
1, 1, 1, 11, 108, 1584, 29808, 674988, 18091944, 557844408, 19468760904, 758698622472, 32653135227936, 1538316755200224, 78737559447563136, 4350956519444451840, 258163046132873143680, 16370486288763937324416, 1104824513292622360789248, 79068747951669626322531840
Offset: 0
-
a(n) = sum(k=0, (3*n+1)\4, (3*n-3*k)!/(3*n-4*k+1)!*abs(stirling(n, k, 1)));
A377426
E.g.f. satisfies A(x) = 1/(1 + log(1 - x*A(x)^4)).
Original entry on oeis.org
1, 1, 11, 254, 9096, 443874, 27487034, 2065181880, 182545878152, 18562391987880, 2134764133508832, 273978733525211472, 38820518588599921200, 6019219063397716575840, 1013766602891962529642832, 184300120562198063868474624, 35971439241165448281366023424
Offset: 0
-
a(n) = sum(k=0, n, (4*n+k)!*abs(stirling(n, k, 1)))/(4*n+1)!;
A376394
Expansion of e.g.f. ( (1/x) * Series_Reversion( x*(1 + log(1-x))^3 ) )^(2/3).
Original entry on oeis.org
1, 2, 20, 388, 11382, 449868, 22427988, 1351746912, 95626268208, 7769995319280, 713229439560816, 73000860715645344, 8243857485642410400, 1018250616169754862048, 136561871538665054975520, 19763248903874313555142656, 3069876028020976768409255808, 509447295061343606934940250880
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(1+log(1-x))^3)/x)^(2/3)))
-
a(n) = 2*sum(k=0, n, (3*n+k+1)!*abs(stirling(n, k, 1)))/(3*n+2)!;
Showing 1-9 of 9 results.