A367476 Sum of the final digits of the distinct prime divisors of n.
0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 1, 5, 3, 9, 8, 2, 7, 5, 9, 7, 10, 3, 3, 5, 5, 5, 3, 9, 9, 10, 1, 2, 4, 9, 12, 5, 7, 11, 6, 7, 1, 12, 3, 3, 8, 5, 7, 5, 7, 7, 10, 5, 3, 5, 6, 9, 12, 11, 9, 10, 1, 3, 10, 2, 8, 6, 7, 9, 6, 14, 1, 5, 3, 9, 8, 11, 8, 8, 9, 7, 3, 3, 3, 12, 12
Offset: 1
Examples
a(66) = 6; The distinct prime divisors of 66 are 2, 3, 11 and the sum of their final digits is 2 + 3 + 1 = 6.
Programs
-
Mathematica
a[n_]:=Total[Mod[Select[Divisors[n],PrimeQ],10]]; Array[a,85] (* Stefano Spezia, Nov 19 2023 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1] % 10); \\ Michel Marcus, Nov 21 2023
-
Python
from sympy import factorint def a(n): return sum(p%10 for p in factorint(n)) print([a(n) for n in range(1, 86)]) # Michael S. Branicky, Nov 19 2023
Formula
a(n) = Sum_{p|n, p prime} (p mod 10).
a(n) = Sum_{d|n} (d mod 10) * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 23 2024
Comments