cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367725 Expansion of g.f. A(x) satisfying x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^5) such that A(0) = 1.

Original entry on oeis.org

1, 1, 5, 30, 205, 1525, 12001, 98229, 827651, 7130614, 62528631, 556247554, 5007588460, 45535148222, 417625550140, 3858724742014, 35884576665516, 335616614245440, 3154800011439675, 29789198944740050, 282426795122071741, 2687467779597815314, 25658105671446219050
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2023

Keywords

Examples

			G.f. A(x) = 1 + x + 5*x^2 + 30*x^3 + 205*x^4 + 1525*x^5 + 12001*x^6 + 98229*x^7 + 827651*x^8 + 7130614*x^9 + 62528631*x^10 + ...
Let R(x) = x * (1 - x) / (1 - x - x^5) then R(A(x)) = x;
however, A(R(x)) does not equal x, rather
A(R(x)) = 1 + x + 5*x^2 + 30*x^3 + 205*x^4 + 1525*x^5 + 12002*x^6 + 98240*x^7 + 827752*x^8 + 7131535*x^9 + 62537177*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(x/serreverse(x*(1+serreverse(x/((1 + x)^5 + x +x*O(x^n))))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* From a formula by Tani Akinari in A243156 */
    {a(n) = 0^n + sum(k=1, n, binomial(n, k)*binomial(5*k-n, k-1))/(n+0^n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^5).
(2) x = (1+x)*A(x) - A(x)^2 + x*A(x)^5 such that A(0) = 1.
(3) A(x) = x / Series_Reversion(x*(1 + Series_Reversion( x/((1 + x)^5 + x) ))).
(4) a(n) = (Sum_{k=1..n} binomial(n, k) * binomial(5*k-n, k-1))/n for n > 0 with a(0) = 1 (derived from a formula by Tani Akinari in A243156).

A371890 G.f. A(x) satisfies A(x) = 1 - x/A(x)^3 * (1 - A(x) - A(x)^4).

Original entry on oeis.org

1, 1, 2, 1, -4, 0, 37, 16, -313, -214, 3005, 2943, -30391, -39432, 318606, 522863, -3418205, -6889626, 37219105, 90415336, -408758113, -1183054415, 4505089166, 15442590040, -49599878555, -201138280510, 542949788652, 2614332298108, -5877502079248
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(n-4*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(n-4*k,n-k-1) for n > 0.

A371891 G.f. A(x) satisfies A(x) = 1 - x/A(x)^2 * (1 - A(x) - A(x)^4).

Original entry on oeis.org

1, 1, 3, 8, 21, 61, 203, 724, 2600, 9291, 33525, 123537, 463796, 1759184, 6706976, 25696524, 99069838, 384429159, 1499778661, 5875513183, 23099489574, 91123553946, 360649997698, 1431724692900, 5699142280127, 22741352276386, 90949212893978
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(2*n-4*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n-4*k,n-k-1) for n > 0.

A378958 G.f. A(x) satisfies A(x) = 1 + x/A(x) * (1 - A(x) + A(x)^4).

Original entry on oeis.org

1, 1, 2, 8, 32, 145, 681, 3337, 16773, 86181, 450268, 2385544, 12784861, 69189509, 377576512, 2075423744, 11480230037, 63857579629, 356962271136, 2004255583560, 11298268724556, 63919517790933, 362806671879955, 2065443363987045, 11790688867079872, 67477283970889867
Offset: 0

Views

Author

Seiichi Manyama, Dec 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, (-1)^k*binomial(n, k)*binomial(3*n-4*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} (-1)^k * binomial(n,k) * binomial(3*n-4*k,n-k-1) for n > 0.
Showing 1-4 of 4 results.