cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367724 Expansion of g.f. A(x) satisfying x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^4) such that A(0) = 1.

Original entry on oeis.org

1, 1, 4, 18, 90, 487, 2785, 16559, 101309, 633523, 4030964, 26012632, 169842909, 1119960451, 7447798584, 49891581704, 336355963821, 2280413834539, 15538054908152, 106345134539952, 730770552189188, 5039872364942277, 34872958276988909, 242026790074533733, 1684356151039022090
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2023

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 18*x^3 + 90*x^4 + 487*x^5 + 2785*x^6 + 16559*x^7 + 101309*x^8 + 633523*x^9 + 4030964*x^10 + ...
Let R(x) = x * (1 - x) / (1 - x - x^4) then R(A(x)) = x;
however, A(R(x)) does not equal x, rather
A(R(x)) = 1 + x + 4*x^2 + 18*x^3 + 90*x^4 + 488*x^5 + 2794*x^6 + 16622*x^7 + 101732*x^8 + 636382*x^9 + 4050546*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(x/serreverse(x*(1+serreverse(x/((1 + x)^4 + x +x*O(x^n))))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* From a formula by Tani Akinari in A243156 */
    {a(n)=0^n+sum(k=1, n, binomial(n, k)*binomial(4*k-n, k-1))/(n+0^n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^4).
(2) x = (1+x)*A(x) - A(x)^2 + x*A(x)^4 such that A(0) = 1.
(3) A(x) = x / Series_Reversion(x*(1 + Series_Reversion( x/((1 + x)^4 + x) ))).
(4) a(n) = (Sum_{k=1..n} binomial(n, k) * binomial(4*k-n, k-1))/n for n > 0 with a(0) = 1 (derived from a formula by Tani Akinari in A243156).

A371913 G.f. A(x) satisfies A(x) = 1 - x/A(x)^4 * (1 - A(x) - A(x)^5).

Original entry on oeis.org

1, 1, 2, 0, -6, 12, 67, -152, -740, 2296, 9017, -35979, -113936, 579516, 1454975, -9493390, -18317155, 157178640, 220172289, -2618995381, -2377680689, 43783556265, 19149194005, -732638868460, 16196837316, 12246524817736, -5891297294673
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(n-5*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(n-5*k,n-k-1) for n > 0.

A371914 G.f. A(x) satisfies A(x) = 1 - x/A(x)^3 * (1 - A(x) - A(x)^5).

Original entry on oeis.org

1, 1, 3, 7, 15, 43, 168, 626, 2005, 6245, 22266, 87365, 328727, 1154975, 4086410, 15464587, 60368094, 229327457, 847539610, 3174058754, 12277874065, 47912709420, 184171945435, 701491726600, 2700878181660, 10556457650417, 41330116314628
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(2*n-5*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n-5*k,n-k-1) for n > 0.

A371915 G.f. A(x) satisfies A(x) = 1 - x/A(x)^2 * (1 - A(x) - A(x)^5).

Original entry on oeis.org

1, 1, 4, 17, 80, 414, 2289, 13199, 78306, 474630, 2926744, 18304543, 115837726, 740379722, 4772461321, 30989448116, 202518745795, 1330961476358, 8791022012712, 58325109518331, 388523983047285, 2597516226459845, 17423367396517210, 117223205014488833
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(3*n-5*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(3*n-5*k,n-k-1) for n > 0.
Showing 1-4 of 4 results.