A367584
Least number whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is n. First position of n in A367580.
Original entry on oeis.org
1, 2, 3, 6, 5, 12, 7, 30, 15, 20, 11, 90, 13, 28, 45, 210, 17, 60, 19, 150, 63, 44, 23, 630, 35, 52, 105, 252, 29, 360, 31, 2310, 99, 68, 175, 2100, 37, 76, 117, 1050, 41, 504, 43, 396, 525, 92, 47, 6930, 77, 140, 153, 468, 53, 420, 275, 1470, 171, 116, 59
Offset: 1
The least number with multiset multiplicity kernel 9 is 15, so a(9) = 15.
The terms together with their prime indices begin:
1 -> 1: {}
2 -> 2: {1}
3 -> 3: {2}
4 -> 6: {1,2}
5 -> 5: {3}
6 -> 12: {1,1,2}
7 -> 7: {4}
8 -> 30: {1,2,3}
9 -> 15: {2,3}
10 -> 20: {1,1,3}
11 -> 11: {5}
12 -> 90: {1,2,2,3}
13 -> 13: {6}
14 -> 28: {1,1,4}
15 -> 45: {2,2,3}
16 ->210: {1,2,3,4}
Positions of squarefree numbers are
A000961.
Contains no nonprime prime powers
A246547.
Positions of first appearances in
A367580.
A071625 counts distinct prime exponents.
-
nn=1000;
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
spnm[y_]:=Max@@NestWhile[Most, Sort[y], Union[#]!=Range[Max@@#]&];
qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}];
Table[Position[qq,i][[1,1]], {i,spnm[qq]}]
A367585
Numbers k whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is different from that of all positive integers less than k.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 20, 23, 28, 29, 30, 31, 35, 37, 41, 43, 44, 45, 47, 52, 53, 59, 60, 61, 63, 67, 68, 71, 73, 76, 77, 79, 83, 89, 90, 92, 97, 99, 101, 103, 105, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 140, 143, 148, 149, 150
Offset: 1
The terms together with their prime indices begin:
1: {} 28: {1,1,4} 60: {1,1,2,3}
2: {1} 29: {10} 61: {18}
3: {2} 30: {1,2,3} 63: {2,2,4}
5: {3} 31: {11} 67: {19}
6: {1,2} 35: {3,4} 68: {1,1,7}
7: {4} 37: {12} 71: {20}
11: {5} 41: {13} 73: {21}
12: {1,1,2} 43: {14} 76: {1,1,8}
13: {6} 44: {1,1,5} 77: {4,5}
15: {2,3} 45: {2,2,3} 79: {22}
17: {7} 47: {15} 83: {23}
19: {8} 52: {1,1,6} 89: {24}
20: {1,1,3} 53: {16} 90: {1,2,2,3}
23: {9} 59: {17} 92: {1,1,9}
All terms are rootless
A007916 (have no positive integer roots).
Positions of squarefree terms appear to be
A073485.
Contains no nonprime prime powers
A246547.
Sorted positions of first appearances in
A367580.
A071625 counts distinct prime exponents.
-
nn=100;
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}];
Select[Range[nn], FreeQ[Take[qq,#-1], qq[[#]]]&]
A367861
Numbers k whose multiset multiplicity cokernel (in which each prime exponent becomes the greatest prime factor with that exponent) is different from that of all positive integers less than k.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 26, 28, 29, 30, 31, 34, 37, 38, 41, 42, 43, 44, 45, 46, 47, 52, 53, 58, 59, 60, 61, 62, 63, 66, 67, 68, 71, 73, 74, 76, 78, 79, 82, 83, 84, 86, 89, 90, 92, 94, 97, 99, 101, 102, 103, 106, 107, 109, 113
Offset: 1
The terms together with their prime indices begin:
1: {} 23: {9} 47: {15}
2: {1} 26: {1,6} 52: {1,1,6}
3: {2} 28: {1,1,4} 53: {16}
5: {3} 29: {10} 58: {1,10}
6: {1,2} 30: {1,2,3} 59: {17}
7: {4} 31: {11} 60: {1,1,2,3}
10: {1,3} 34: {1,7} 61: {18}
11: {5} 37: {12} 62: {1,11}
12: {1,1,2} 38: {1,8} 63: {2,2,4}
13: {6} 41: {13} 66: {1,2,5}
14: {1,4} 42: {1,2,4} 67: {19}
17: {7} 43: {14} 68: {1,1,7}
19: {8} 44: {1,1,5} 71: {20}
20: {1,1,3} 45: {2,2,3} 73: {21}
22: {1,5} 46: {1,9} 74: {1,12}
All terms are rootless
A007916 (have no positive integer roots).
For kernel instead of cokernel we have
A367585, sorted version of
A367584.
Sorted positions of first appearances in
A367859.
A071625 counts distinct prime exponents.
-
nn=100;
mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&], {i,mts}]]];
qq=Table[Times@@mmc[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}];
Select[Range[nn], FreeQ[Take[qq,#-1],qq[[#]]]&]
Showing 1-3 of 3 results.
Comments