A368947 Row lengths of A368946: in the MIU formal system, number of (possibly not distinct) strings n steps distant from the MI string.
1, 2, 3, 6, 16, 60, 356, 3227, 44310, 928650, 28577371, 1296940642
Offset: 0
References
- Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.
Links
Programs
-
Mathematica
MIUStepW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, {"111" -> "0","00" -> ""}]}&, s]]; With[{rowmax = 9}, Map[Length, NestList[MIUStepW3, {"1"}, rowmax]]]
-
Python
from itertools import islice def occurrence_swaps(w, s, t): out, oi = [], w.find(s) while oi != -1: out.append(w[:oi] + t + w[oi+len(s):]) oi = w.find(s, oi+1) return out def moves(w): # moves for word w in MIU system, encoded as 310 nxt = [] if w[-1] == '1': nxt.append(w + '0') # Rule 1 if w[0] == '3': nxt.append(w + w[1:]) # Rule 2 nxt.extend(occurrence_swaps(w, '111', '0')) # Rule 3 nxt.extend(occurrence_swaps(w, '00', '')) # Rule 4 return nxt def agen(): # generator of terms frontier = ['31'] while len(frontier) > 0: yield len(frontier) reach1 = [m for p in frontier for m in moves(p)] frontier, reach1 = reach1, [] print(list(islice(agen(), 10))) # Michael S. Branicky, Jan 14 2024
Formula
a(n) >= A368954(n).
Extensions
a(10)-a(11) from Michael S. Branicky, Jan 14 2024
Comments