cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369241 Number of representations of 2^n - 1 as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 2, 1, 3, 0, 2, 2, 6, 0, 13, 1, 13, 0, 15, 0, 24, 1, 49, 4, 47, 0, 156, 6, 129, 0, 441, 1, 616
Offset: 0

Views

Author

Antti Karttunen, Jan 21 2024

Keywords

Comments

Any solutions for odd cases must have p = 3, with q and r > 3, because A000225(2n-1) == 1 (mod 3), while on even n, 2^n - 1 is a multiple of 3. This explains why the odd bisection grows much more sluggishly than the even bisection.
Question 2: Is there an infinite number of 0's in this sequence? See also comments in A369055.

Crossrefs

Programs

  • PARI
    A369054(n) = if(3!=(n%4),0, my(v = [3,3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r),c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])));
    search_for_3k1_cases(n) = if(3!=(n%4), 0, my(p = 5, q, c=0); while(1, q = (n-(3*p)) / (3+p); if(q < p, return(c), if(1==denominator(q) && isprime(q), c++; write("b369241_by_solutions_of_odd_bisection_to.txt", n, " ", 3*p*q))); p = nextprime(1+p)));
    A369241(n) = if(n%2, search_for_3k1_cases((2^n)-1), A369054((2^n)-1));

Formula

a(n) = A369054(A000225(n)).
For n >= 2, a(n) = A369055(2^(n-2)).