A369304 Numbers k for which the polynomial (x-1)^3*(x+1)^k has more than one zero coefficient.
3, 6, 14, 19, 31, 38, 54, 63, 83, 94, 118, 131, 159, 174, 206, 223, 259, 278, 318, 339, 383, 406, 454, 479, 531, 558, 614, 643, 703, 734, 798, 831, 899, 934, 1006, 1043, 1119, 1158, 1238, 1279, 1363, 1406, 1494, 1539, 1631, 1678, 1774, 1823, 1923, 1974, 2078, 2131, 2239, 2294, 2406, 2463
Offset: 1
Examples
For n=1, a(1)=3 and the polynomial (x-1)^3*(x+1)^3 = x^6 - 3*x^4 + 3*x^2 - 1 has three vanishing coefficients, those of x^5, x^3 and x. For n=2, a(2)=6 and the polynomial (x-1)^3*(x+1)^6 = x^9 + 3*x^8 - 8*x^6 - 6*x^5 + 6*x^4 + 8*x^3 - 3*x - 1 has two vanishing coefficients, those of x^7 and x^2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- George E. Andrews, Euler's Pentagonal Number Theorem, Mathematics Magazine, Vol. 56, No. 5 (Nov., 1983), pp. 279-284.
- Vladimir Petrov Kostov, On universal sign patterns, arXiv:2405.18895 [math.CA], 2024. See p. 5.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1, 2, -2, -1, 1}, {3, 6, 14, 19, 31}, 56] (* Hugo Pfoertner, Feb 12 2024 *)
-
PARI
isok(k) = #select(x->(x==0), Vec((x-1)^3*(x+1)^k)) > 1; \\ Michel Marcus, Jan 19 2024
-
Python
def A369304(n): return ((n+1<<1)-(n>>1))**2//3-2 # Chai Wah Wu, Mar 05 2024
Formula
a(n) = ((m(n) + 3)^2 - 7)/3 where m(n) = A001651(n) is the n-th natural number not divisible by 3.
G.f.: (x*(1+x+x^2)*(3-x^2))/((1-x)^3*(1+x)^2). - Joerg Arndt, Jan 19 2024
E.g.f.: (4 + (3*x^2 + 13*x - 4)*cosh(x) + (3*x^2 + 11*x - 1)*sinh(x))/4. - Stefano Spezia, Feb 13 2024
Sum_{n>=1} 1/a(n) = 3/2 + (tan((1+2*sqrt(7))*Pi/6) - cot((1+sqrt(7))*Pi/3)) * Pi/(2*sqrt(7)). - Amiram Eldar, Mar 07 2024
Comments