A369712 Maximal coefficient of (1 + x) * (1 + x^2)^2 * (1 + x^3)^3 * ... * (1 + x^n)^n.
1, 1, 2, 9, 79, 1702, 78353, 7559080, 1509040932, 619097417818, 519429629728698, 887531129680197018, 3078434842626707386602, 21627792113204714623569767, 307257554772242590850211062866, 8813577747274880345454470354985336, 509819403352972623999938010230619997952
Offset: 0
Keywords
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, expand(b(n-1)*(1+x^n)^n)) end: a:= n-> max(coeffs(b(n))): seq(a(n), n=0..16); # Alois P. Heinz, Jan 29 2024
-
Mathematica
Table[Max[CoefficientList[Product[(1 + x^k)^k, {k, 1, n}], x]], {n, 0, 16}]
-
PARI
a(n) = vecmax(Vec(prod(k=1, n, (1+x^k)^k))); \\ Michel Marcus, Jan 30 2024