A368475
Expansion of o.g.f. (1-x)^5/((1-x)^5 - x^4).
Original entry on oeis.org
1, 0, 0, 0, 1, 5, 15, 35, 71, 136, 265, 550, 1211, 2732, 6126, 13485, 29191, 62648, 134408, 289656, 627401, 1363124, 2963186, 6434484, 13951852, 30221185, 65442625, 141745045, 307137901, 665732417, 1443184210, 3128438335, 6780867186, 14696002913, 31848721632
Offset: 0
Since there are C(4,4) = 1 type of 4, C(5,4) = 5 types of 5, C(6,4) = 15 types of 6, C(7,4) = 35 types of 7, C(8,4) = 70 types of 8, and (12,4) = 495 types of 12, we can write 12 in the following ways:
12: 495 ways;
8+4: 70 ways;
7+5: 175 ways;
6+6: 225 ways;
5+7: 175 ways;
4+8: 70 ways;
4+4+4: 1 way, for a total of 1211 ways.
-
CoefficientList[Series[(1 - x)^5/((1 - x)^5 - x^4), {x, 0, 50}], x] (* Wesley Ivan Hurt, Dec 26 2023 *)
-
Vec((1-x)^5/((1-x)^5 - x^4) + O(x^40)) \\ Michel Marcus, Dec 27 2023
A369804
Expansion of 1/(1 - x^3/(1-x)^5).
Original entry on oeis.org
1, 0, 0, 1, 5, 15, 36, 80, 181, 431, 1060, 2617, 6401, 15521, 37513, 90741, 219918, 533619, 1295022, 3141826, 7619870, 18478155, 44810670, 108676262, 263576791, 639267800, 1550434777, 3760269946, 9119740067, 22118021213, 53642768716, 130099857234, 315531401964
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(1/(1-x^3/(1-x)^5))
-
a(n) = sum(k=0, n\3, binomial(n-1+2*k, n-3*k));
A369840
Number of compositions of 5*n into parts 2 and 5.
Original entry on oeis.org
1, 1, 2, 7, 23, 68, 194, 555, 1601, 4633, 13404, 38752, 112004, 323728, 935737, 2704817, 7818464, 22599701, 65325542, 188826693, 545813094, 1577700612, 4560424135, 13182138184, 38103641048, 110140512968, 318366757185, 920255312908, 2660044812499, 7688994894381
Offset: 0
-
LinearRecurrence[{5, -9, 10, -5, 1}, {1, 1, 2, 7, 23}, 50] (* Paolo Xausa, Mar 15 2024 *)
-
a(n) = sum(k=0, n\2, binomial(n+3*k, n-2*k));
A369842
Number of compositions of 5*n-1 into parts 2 and 5.
Original entry on oeis.org
1, 3, 7, 18, 52, 154, 450, 1301, 3753, 10838, 31327, 90568, 261813, 756786, 2187496, 6323023, 18277014, 52830706, 152709940, 441415867, 1275934888, 3688154521, 10660798289, 30815580241, 89074003241, 257472939209, 744238632362, 2151259638423, 6218325456983
Offset: 1
-
LinearRecurrence[{5, -9, 10, -5, 1}, {1, 3, 7, 18, 52}, 50] (* Paolo Xausa, Mar 15 2024 *)
-
a(n) = sum(k=0, n\2, binomial(n+1+3*k, n-1-2*k));
A369843
Number of compositions of 5*n-3 into parts 2 and 5.
Original entry on oeis.org
1, 2, 4, 11, 34, 102, 296, 851, 2452, 7085, 20489, 59241, 171245, 494973, 1430710, 4135527, 11953991, 34553692, 99879234, 288705927, 834519021, 2412219633, 6972643768, 20154781952, 58258423000, 168398935968, 486765693153, 1407021006061, 4067065818560
Offset: 1
-
LinearRecurrence[{5, -9, 10, -5, 1}, {1, 2, 4, 11, 34}, 50] (* Paolo Xausa, Mar 15 2024 *)
-
a(n) = sum(k=0, n\2, binomial(n+3*k, n-1-2*k));
A369844
Number of compositions of 5*n-4 into parts 2 and 5.
Original entry on oeis.org
0, 1, 4, 11, 29, 81, 235, 685, 1986, 5739, 16577, 47904, 138472, 400285, 1157071, 3344567, 9667590, 27944604, 80775310, 233485250, 674901117, 1950836005, 5638990526, 16299788815, 47115369056, 136189372297, 393662311506, 1137900943868, 3289160582291, 9507486039274
Offset: 1
-
LinearRecurrence[{5, -9, 10, -5, 1}, {0, 1, 4, 11, 29}, 50] (* Paolo Xausa, Mar 15 2024 *)
-
a(n) = sum(k=0, n\2, binomial(n+1+3*k, n-2-2*k));
Showing 1-6 of 6 results.
Comments