cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369923 Array read by antidiagonals: A(n,k) is the number of permutations of n copies of 1..k with values introduced in order and without cyclically adjacent elements equal.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 31, 22, 1, 0, 1, 293, 1415, 134, 1, 0, 1, 3326, 140343, 75843, 866, 1, 0, 1, 44189, 20167651, 83002866, 4446741, 5812, 1, 0, 1, 673471, 3980871156, 158861646466, 55279816356, 276154969, 40048, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Feb 05 2024

Keywords

Comments

Also, T(n,k) is the number of generalized chord labeled loopless diagrams with k parts of K_n. See the Krasko reference for a full definition.

Examples

			Array begins:
n\k| 1 2    3         4              5                    6 ...
---+-----------------------------------------------------------
 1 | 0 1    1         1              1                    1 ...
 2 | 0 1    4        31            293                 3326 ...
 3 | 0 1   22      1415         140343             20167651 ...
 4 | 0 1  134     75843       83002866         158861646466 ...
 5 | 0 1  866   4446741    55279816356     1450728060971387 ...
 6 | 0 1 5812 276154969 39738077935264 14571371516350429940 ...
 ...
		

Crossrefs

Column 3 is A197657, column 4 appears to be A209183(n)/2.
Cf. A322013 (without linearly adjacent elements equal), A322093.

Programs

  • Mathematica
    T[n_, k_] := If[k == 1, 0, Expand[(-1)^(k (n + 1))/(k - 1)! n Hypergeometric1F1[1 - n, 2, x]^k x^(k - 1)] /. x^p_ :> p!] (* Eric W. Weisstein, Feb 20 2025 *)
  • PARI
    \\ compare with A322013.
    q(n, x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n, k) = if(k > 1, subst(serlaplace(n*q(n, x)^k/x), x, 1)/(k-1)!, 0)