cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A371403 Least k such that prime(k), prime(k+1), prime(k+2), ..., prime(k+n) all have the same last digit.

Original entry on oeis.org

34, 258, 2147, 11582, 62192, 274810, 1500309, 2235294, 10919138, 24000612, 3074210315, 6244442805, 6244442805, 143338476264, 244844614858
Offset: 1

Views

Author

Michel Lagneau, Mar 21 2024

Keywords

Comments

The interest in studying a sequence of n consecutive prime numbers having the same last digit is to look at the behavior of the rarefaction of these numbers when n becomes large.
a(k) > 10^10 for k >= 14. - David A. Corneth, Mar 22 2024

Examples

			a(1) = A107730(1) = 34 because prime(34) = 139, prime(35) = 149, both end with the digit 9, and no two consecutive smaller primes end with the same digit.
a(2) = 258 because prime(258) = 1627, prime(259) = 1637, prime(260) = 1657 with the same last digit 7, and no three consecutive smaller primes have the same last digit.
a(4) = A371390(1).
		

Crossrefs

Programs

  • Maple
    nn:=15*10^6:
    for n from 2 to 7 do :
       ii:=0:d:=array(1..n):
      for m from 1 to nn while(ii=0)
    do:
       lst:={}:
         for k from 1 to n do:
    d[k]:=irem(ithprime(m+k-1),10):
            lst:=lst union {d[k]}:
         od:
          if lst={d[1]}
           then
           printf(`%d %d \n`,n-1,m):ii:=1:
           else
          fi:
        od:
        od:
  • Mathematica
    a[n_] := Module[{v = Mod[Prime[Range[n + 1]], 10], k = 1, p}, p = Prime[n + 1]; While[! SameQ @@ v, p = NextPrime[p]; v = Join[Rest[v], {Mod[p, 10]}]; k++]; k]; Array[a, 6] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    upto(n) = {
    	n += 30;
    	my(res = List(), q = 2, t = 1, ld = 2, nld, streak = 0);
    	forprime(p = 3, oo,
    		nld = p%10;
    		if(nld == ld,
    			streak++;
    			if(streak > #res,
    				listput(res, t-streak+1);
    				print1(t-streak+1", ");
    			)
    		,
    			streak = 0
    		);
    		q = p;
    		ld = nld;
    		t++;
    		if(t > n,
    			return(res);
    		)
    	);
    	res
    } \\ David A. Corneth, Mar 23 2024

Extensions

a(7)-a(10) from Amiram Eldar, Mar 21 2024
a(11)-a(13) from David A. Corneth, Mar 22 2024
a(14) from Michael S. Branicky, May 15 2025
a(15) from Michael S. Branicky, May 21 2025
Showing 1-1 of 1 results.