cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A263340 Triangle read by rows: T(n,k) is the number of graphs with n vertices containing k triangles.

Original entry on oeis.org

1, 1, 2, 3, 1, 7, 2, 1, 0, 1, 14, 7, 5, 2, 3, 1, 0, 1, 0, 0, 1, 38, 23, 28, 14, 18, 9, 7, 5, 4, 1, 4, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 107, 102, 141, 117, 123, 92, 80, 63, 49, 35, 35, 23, 15, 17, 10, 4, 9, 5, 2, 3, 3, 2, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Christian Stump, Oct 15 2015

Keywords

Comments

Row sums give A000088.
First column is A006785.
Row lengths are 1 + binomial(n,3). - Geoffrey Critzer, Apr 13 2017

Examples

			Triangle begins:
  1;
  1;
  2;
  3,1;
  7,2,1,0,1;
  14,7,5,2,3,1,0,1,0,0,1;
  38,23,28,14,18,9,7,5,4,1,4,1,1,1,0,0,1,0,0,0,1;
  ...
		

Crossrefs

Row sums are A000088, labeled A006125.
Column k = 0 is A006785 (lab A213434), covering A372169 (lab A372168).
Counting edges gives A008406 (lab A084546), covering A370167 (lab A054548).
Row lengths are A050407.
The labeled version is A372170, covering A372167.
The covering case is A372173, sums A002494, labeled A006129.
Column k = 1 is A372194 (lab A372172), covering A372174 (lab A372171).
A001858 counts acyclic graphs, unlabeled A005195.
A372176 counts labeled graphs by directed cycles, covering A372175.

Programs

  • Mathematica
    Table[Table[Count[Table[Tr[MatrixPower[AdjacencyMatrix[GraphData[{n, i}]], 3]]/6, {i, 1, NumberOfGraphs[n]}], k], {k, 0, Binomial[n, 3]}], {n, 1, 7}] (* Geoffrey Critzer, Apr 13 2017 *)

Extensions

Row 7 from Geoffrey Critzer, Apr 13 2017
T(0,0)=1 prepended by Alois P. Heinz, Apr 13 2017

A372169 Number of unlabeled triangle-free graphs covering n vertices.

Original entry on oeis.org

1, 0, 1, 1, 4, 7, 24, 69, 303, 1487, 10275, 92899, 1157109, 19534822, 447074367, 13764681083, 567227701549, 31139379910949
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2024

Keywords

Comments

The labeled version is A372168.

Examples

			Non-isomorphic representatives of the a(5) = 7 graphs:
  12-35-45
  13-24-35-45
  14-25-35-45
  15-25-35-45
  12-13-24-35-45
  15-23-24-35-45
  13-14-23-24-35-45
		

Crossrefs

Dominated by A002494, labeled A006129.
Covering case of A006785, labeled A213434.
The connected case is A024607.
For all cycles (not just triangles) we have A144958, labeled A105784.
The labeled version is A372168.
For a unique triangle (labeled) we have A372171, non-covering A372172.
Column k = 0 of A372173, labeled A372167.
For a unique triangle (unlabeled) we have A372174, non-covering A372194.
A001858 counts acyclic graphs, unlabeled A005195.
A006125 counts simple graphs, unlabeled A000088.
A054548 counts covering graphs by number of edges, unlabeled A370167.
A372170 counts graphs by triangles, unlabeled A263340.

Formula

First differences of A006785.

A372170 Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k triangles, 0 <= k <= binomial(n,3).

Original entry on oeis.org

1, 1, 2, 7, 1, 41, 16, 6, 0, 1, 388, 290, 195, 70, 40, 30, 0, 10, 0, 0, 1, 5789, 6980, 6910, 4560, 3030, 2292, 1230, 780, 600, 180, 236, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 133501, 235270, 313705, 302505, 260890, 222509, 174615, 126780, 102970, 67165, 50134, 37485, 20370, 17990, 11445, 6552, 4515, 3570, 1680, 1785, 154, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2024

Keywords

Examples

			Triangle begins:
     1
     1
     2
     7    1
    41   16    6    0    1
   388  290  195   70   40   30    0   10    0    0    1
   ...
For example, the T(4,1) = 16 graphs are:
  12-13-23
  12-14-24
  13-14-34
  23-24-34
  12-13-14-23
  12-13-14-24
  12-13-14-34
  12-13-23-24
  12-13-23-34
  12-14-23-24
  12-14-24-34
  12-23-24-34
  13-14-23-34
  13-14-24-34
  13-23-24-34
  14-23-24-34
		

Crossrefs

Row sums are A006125, covering A006129.
Row lengths are A050407.
Counting edges instead of triangles gives A084546, covering A054548.
Column k = 0 is A213434, covering A372168.
The unlabeled version is A263340.
The covering case is A372167, unlabeled A372173.
Column k = 1 is A372172, covering A372171.
For all cycles (not just triangles) we have A372176, covering A372175.
A001858 counts acyclic graphs, unlabeled A005195.
A367867 counts non-choosable graphs, covering A367868.
A372193 counts unicyclic graphs, unlabeled A236570, covering A372191.

Programs

  • Mathematica
    cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}]&&MemberQ[y,{#[[1]],#[[3]]}]&&MemberQ[y,{#[[2]],#[[3]]}]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[cys[#]]==k&]],{n,0,5},{k,0,Binomial[n,3]}]

Formula

Binomial transform of columns of A372167.

Extensions

a(42) onwards from Andrew Howroyd, Dec 29 2024

A372191 Number of unlabeled simple graphs covering n vertices with a unique undirected cycle of length > 2.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 16, 43, 117, 319, 875, 2409, 6692, 18614, 52099, 146186, 411720, 1162295, 3289994, 9330913, 26517036, 75481622, 215201178, 614398459, 1756392061, 5026955216, 14403488345, 41311616835, 118601561506, 340795908579, 980078195995
Offset: 0

Views

Author

Gus Wiseman, Apr 27 2024

Keywords

Comments

An undirected cycle in a graph is a sequence of distinct vertices, up to rotation and reversal, such that there are edges between all consecutive elements, including the last and the first.

Crossrefs

For no cycles we have A144958 (non-covering A005195), labeled A105784 (non-covering A001858).
Counting triangles instead of cycles gives A372174 (non-covering A372194), labeled A372171 (non-covering A372172).
The non-covering version is A236570, labeled A372193.
The labeled version is A372195, column k = 1 of A372175.
A002807 counts cycles in a complete graph.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A372167 counts graphs by triangles, non-covering A372170.
A372173 counts unlabeled graphs by triangles (non-covering A263340).
A372176 counts labeled graphs by directed cycles.

Formula

First differences of A236570.

Extensions

a(7) onwards from Andrew Howroyd, Jul 31 2024

A372171 Number of labeled simple graphs covering n vertices with a unique triangle.

Original entry on oeis.org

0, 0, 0, 1, 12, 220, 5460, 191975, 9596160, 683389812, 69270116040
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2024

Keywords

Comments

The unlabeled version is A372174.

Examples

			The a(4) = 12 graphs:
  12,13,14,23
  12,13,14,24
  12,13,14,34
  12,13,23,24
  12,13,23,34
  12,14,23,24
  12,14,24,34
  12,23,24,34
  13,14,23,34
  13,14,24,34
  13,23,24,34
  14,23,24,34
		

Crossrefs

Column k = 1 of A372167, unlabeled A372173.
For no triangles we have A372168 (non-covering A213434), unlabeled A372169.
The non-covering case is A372172, unlabeled A372194.
The unlabeled version is A372174.
For all cycles (not just triangles) we have A372195, non-covering A372193.
A001858 counts acyclic graphs, unlabeled A005195.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494
A054548 counts labeled covering graphs by edges, unlabeled A370167.
A105784 counts acyclic covering graphs, unlabeled A144958.
A372170 counts graphs by triangles, unlabeled A263340.
A372175 counts covering graphs by cycles, non-covering A372176.

Programs

  • Mathematica
    cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&];
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Union@@#==Range[n]&&Length[cys[#]]==1&]],{n,0,5}]

Formula

Inverse binomial transform of A372172.

Extensions

a(7)-a(10) from Andrew Howroyd, Aug 01 2024

A372173 Irregular triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with exactly k triangles, 0 <= k <= binomial(n,3).

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 1, 1, 0, 1, 7, 5, 4, 2, 2, 1, 0, 1, 0, 0, 1, 24, 16, 23, 12, 15, 8, 7, 4, 4, 1, 3, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 69, 79, 113, 103, 105, 83, 73, 58, 45, 34, 31, 22, 14, 16, 10, 4, 8, 5, 2, 3, 2, 2, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2024

Keywords

Examples

			Triangle begins:
  1
  0
  1
  1 1
  4 1 1 0 1
  7 5 4 2 2 1 0 1 0 0 1
		

Crossrefs

Row sums are A002494, labeled A006129.
Row lengths are A050407.
The non-covering version is A263340, labeled A372170.
Counting edges instead of triangles gives A370167, labeled A054548.
The labeled version is A372167.
Column k = 0 is A372169, labeled A372168 (non-covering A213434).
Column k = 1 is A372174, labeled A372171.
Column k = 1 is also the covering case of A372194, labeled A372172.
A000088 counts unlabeled graphs, labeled A006125.
A001858 counts acyclic graphs, unlabeled A005195.
A372176 counts labeled graphs by directed cycles, covering A372175.

Extensions

a(21) onwards from Andrew Howroyd, Dec 29 2024

A372172 Number of labeled simple graphs on n vertices with exactly one triangle.

Original entry on oeis.org

0, 0, 0, 1, 16, 290, 6980, 235270, 11298056, 777154308, 76560083040
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2024

Keywords

Comments

The unlabeled version is A372194.

Examples

			The a(4) = 16 graphs:
  12,13,23
  12,14,24
  13,14,34
  23,24,34
  12,13,14,23
  12,13,14,24
  12,13,14,34
  12,13,23,24
  12,13,23,34
  12,14,23,24
  12,14,24,34
  12,23,24,34
  13,14,23,34
  13,14,24,34
  13,23,24,34
  14,23,24,34
		

Crossrefs

For no triangles we have A213434, covering A372168 (unlabeled A372169).
Column k = 1 of A372170, unlabeled A263340.
The covering case is A372171, unlabeled A372174.
For all cycles (not just triangles) we have A372193, covering A372195.
The unlabeled version is A372194.
A001858 counts acyclic graphs, unlabeled A005195.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494
A054548 counts labeled covering graphs by edges, unlabeled A370167.
A372167 counts covering graphs by triangles, unlabeled A372173.

Programs

  • Mathematica
    cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[cys[#]]==1&]],{n,0,5}]

Formula

Binomial transform of A372171.

Extensions

a(8)-a(10) from Andrew Howroyd, Aug 01 2024

A372174 Number of unlabeled simple graphs covering n vertices with a unique triangle.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 16, 79, 424, 3098, 28616
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2024

Keywords

Comments

The labeled version is A372171.

Crossrefs

The non-covering version is column k = 1 of A263340, labeled A372170.
Case of A370167 with a unique triangle, labeled A054548.
For no triangles we have A372169, labeled A372168 (non-covering A213434).
The labeled version is A372171, column k = 1 of A372167.
Column k = 1 of A372173, labeled A372167.
For cycles (not just triangles) we have A372191, labeled A372195.
The non-covering version is A372194, labeled A372172.
A000088 counts unlabeled graphs, labeled A006125.
A001858 counts acyclic graphs, unlabeled A005195.
A002494 counts unlabeled covering graphs, labeled A006129.
A372176 counts labeled graphs by directed cycles, covering A372175.

Formula

First differences of A372194.

A372193 Number of labeled simple graphs on n vertices with a unique cycle of length > 2.

Original entry on oeis.org

0, 0, 0, 1, 19, 317, 5582, 108244, 2331108, 55636986, 1463717784, 42182876763, 1323539651164, 44955519539963, 1644461582317560, 64481138409909506, 2698923588248208224, 120133276796015812548, 5667351458582453925696, 282496750694780020437765, 14837506263979393796687088
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2024

Keywords

Comments

An undirected cycle in a graph is a sequence of distinct vertices, up to rotation and reversal, such that there are edges between all consecutive elements, including the last and the first.

Examples

			The a(4) = 19 graphs:
  12,13,23
  12,14,24
  13,14,34
  23,24,34
  12,13,14,23
  12,13,14,24
  12,13,14,34
  12,13,23,24
  12,13,23,34
  12,13,24,34
  12,14,23,24
  12,14,23,34
  12,14,24,34
  12,23,24,34
  13,14,23,24
  13,14,23,34
  13,14,24,34
  13,23,24,34
  14,23,24,34
		

Crossrefs

For no cycles we have A001858 (covering A105784), unlabeled A005195 (covering A144958).
Counting triangles instead of cycles gives A372172 (non-covering A372171), unlabeled A372194 (non-covering A372174).
The unlabeled version is A236570, non-covering A372191.
The covering case is A372195, column k = 1 of A372175.
A000088 counts unlabeled graphs, labeled A006125.
A002807 counts cycles in a complete graph.
A006129 counts labeled graphs, unlabeled A002494.
A372167 counts graphs by triangles, non-covering A372170.
A372173 counts unlabeled graphs by triangles, non-covering A263340.

Programs

  • Mathematica
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@y,{k}],And @@ Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&], {k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[cyc[#]]==2&]],{n,0,5}]
  • PARI
    seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024

Formula

E.g.f.: B(x)*C(x) where B(x) is the e.g.f. of A057500 and C(x) is the e.g.f. of A001858. - Andrew Howroyd, Jul 31 2024

Extensions

a(7) onwards from Andrew Howroyd, Jul 31 2024

A372195 Number of labeled simple graphs covering n vertices with a unique undirected cycle of length > 2.

Original entry on oeis.org

0, 0, 0, 1, 15, 232, 3945, 75197, 1604974, 38122542, 1000354710, 28790664534, 902783451933, 30658102047787, 1121532291098765, 43985781899812395, 1841621373756094796, 82002075703514947236, 3869941339069299799884, 192976569550677042208068, 10139553075163838030949495
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2024

Keywords

Comments

An undirected cycle in a graph is a sequence of distinct vertices, up to rotation and reversal, such that there are edges between all consecutive elements, including the last and the first.

Examples

			The a(4) = 15 graphs:
  12,13,14,23
  12,13,14,24
  12,13,14,34
  12,13,23,24
  12,13,23,34
  12,13,24,34
  12,14,23,24
  12,14,23,34
  12,14,24,34
  12,23,24,34
  13,14,23,24
  13,14,23,34
  13,14,24,34
  13,23,24,34
  14,23,24,34
		

Crossrefs

For no cycles we have A105784 (for triangles A372168, non-covering A213434), unlabeled A144958 (for triangles A372169).
Counting triangles instead of cycles gives A372171 (non-covering A372172), unlabeled A372174 (non-covering A372194).
The unlabeled version is A372191, non-covering A236570.
The non-covering version is A372193, column k = 1 of A372176.
A000088 counts unlabeled graphs, labeled A006125.
A001858 counts acyclic graphs, unlabeled A005195.
A002807 counts cycles in a complete graph.
A006129 counts labeled graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.
A372167 counts covering graphs by triangles (non-covering A372170), unlabeled A372173 (non-covering A263340).

Programs

  • Mathematica
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==2&]],{n,0,5}]
  • PARI
    seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2-x)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024

Formula

Inverse binomial transform of A372193. - Andrew Howroyd, Jul 31 2024

Extensions

a(7) onwards from Andrew Howroyd, Jul 31 2024
Showing 1-10 of 11 results. Next