A372342 Number of noncrossing partitions of [n] that contain exactly one singleton.
0, 1, 0, 3, 4, 15, 36, 105, 288, 819, 2320, 6633, 19020, 54769, 158172, 458055, 1329552, 3867075, 11267856, 32884953, 96111900, 281267469, 824083260, 2417052267, 7096175856, 20852160525, 61324675776, 180488550375, 531581605828, 1566658748079, 4620016882740, 13632008884201, 40244583972480
Offset: 0
Examples
For n=3 the a(3)=3 partitions with exactly one singleton are {{12},{3}}, {{13},{2}}, and {{1},{23}}.
Links
- Julien Rouyer, Table of n, a(n) for n = 0..299
- Julien Rouyer and A. Ninet, Two New Integer Sequences Related to Crossroads and Catalan Numbers, hal-04281025, 2023. See also arXiv:2311.07181 [math.CO], 2023.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, 2*(n-2)*a(n-1)/(n-1)+3*a(n-2)) end: seq(a(n), n=0..32); # Alois P. Heinz, Jun 25 2024
-
Mathematica
a[n_]:=Sum[Binomial[n, m-1]*Binomial[n-m-1, m-2], {m, Floor[(n+1)/2]}]; Array[a,30,0] (* Stefano Spezia, Apr 28 2024 *) a[n_] := (-1)^(1 - n) n Hypergeometric2F1[1 - n, 1/2, 2, 4]; Table[a[n], {n, 0, 32}] (* Peter Luschny, Jun 25 2024 *)
-
SageMath
seq = [0,1] for n in range(2,20): up = (n+1) // 2 s = 0 for m in range(1,up+1): s += binomial(n,m-1) * binomial(n-m-1,m-2) seq.append(s)
Formula
a(n) = Sum_{m=1..floor((n+1)/2)} binomial(n, m-1)*binomial(n-m-1, m-2) for n != 1.
a(n) = n*A005043(n-1) for n>=1. - Ira M. Gessel, Jun 25 2024
Comments