cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372342 Number of noncrossing partitions of [n] that contain exactly one singleton.

Original entry on oeis.org

0, 1, 0, 3, 4, 15, 36, 105, 288, 819, 2320, 6633, 19020, 54769, 158172, 458055, 1329552, 3867075, 11267856, 32884953, 96111900, 281267469, 824083260, 2417052267, 7096175856, 20852160525, 61324675776, 180488550375, 531581605828, 1566658748079, 4620016882740, 13632008884201, 40244583972480
Offset: 0

Views

Author

Julien Rouyer, Apr 28 2024

Keywords

Comments

Similar to A005043 and linked to A363448.

Examples

			For n=3 the a(3)=3 partitions with exactly one singleton are {{12},{3}}, {{13},{2}}, and {{1},{23}}.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          2*(n-2)*a(n-1)/(n-1)+3*a(n-2))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Jun 25 2024
  • Mathematica
    a[n_]:=Sum[Binomial[n, m-1]*Binomial[n-m-1, m-2], {m, Floor[(n+1)/2]}]; Array[a,30,0] (* Stefano Spezia, Apr 28 2024 *)
    a[n_] := (-1)^(1 - n) n Hypergeometric2F1[1 - n, 1/2, 2, 4];
    Table[a[n], {n, 0, 32}]  (* Peter Luschny, Jun 25 2024 *)
  • SageMath
    seq = [0,1]
    for n in range(2,20):
        up = (n+1) // 2
        s = 0
        for m in range(1,up+1):
            s += binomial(n,m-1) * binomial(n-m-1,m-2)
        seq.append(s)

Formula

a(n) = Sum_{m=1..floor((n+1)/2)} binomial(n, m-1)*binomial(n-m-1, m-2) for n != 1.
a(n) = n*A005043(n-1) for n>=1. - Ira M. Gessel, Jun 25 2024