A372306 Cardinality of the largest subset of {1,...,n} such that no three distinct elements of this subset multiply to a square.
1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 8, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 17, 18, 19, 19, 20, 20, 20, 21, 21, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 32, 33, 34, 34, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 42, 43, 44, 45, 46
Offset: 1
Examples
a(7)=6, because the set {1,2,3,4,5,7} has no three distinct elements multiplying to a square, but {1,2,3,4,5,6,7} has 2*3*6 = 6^2.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..200
- Thomas Bloom, Problem 121, Erdős Problems.
- David A. Corneth, PARI program
- Paul Erdős, Andràs Sárközy, and Vera T. Sós, On Product Representations of Powers, I, Europ. J. Combinatorics 16 (1995), 567--588.
- Terence Tao, On product representations of squares, arXiv:2405.11610 [math.NT], May 2024.
- Terence Tao, Erdős problem database, see no. 121.
Programs
-
PARI
\\ See PARI link
-
Python
from math import isqrt def is_square(n): return isqrt(n) ** 2 == n def valid_subset(A): length = len(A) for i in range(length): for j in range(i + 1, length): for k in range(j + 1, length): if is_square(A[i] * A[j] * A[k]): return False return True def largest_subset_size(N): from itertools import combinations max_size = 0 for size in range(1, N + 1): for subset in combinations(range(1, N + 1), size): if valid_subset(subset): max_size = max(max_size, size) return max_size for N in range(1, 11): print(largest_subset_size(N))
-
Python
from math import prod from functools import lru_cache from itertools import combinations from sympy.ntheory.primetest import is_square @lru_cache(maxsize=None) def A372306(n): if n==1: return 1 i = A372306(n-1)+1 if sum(1 for p in combinations(range(1,n),2) if is_square(n*prod(p))) > 0: a = [set(p) for p in combinations(range(1,n+1),3) if is_square(prod(p))] for q in combinations(range(1,n),i-1): t = set(q)|{n} if not any(s<=t for s in a): return i else: return i-1 else: return i # Chai Wah Wu, May 30 2024
Formula
From David A. Corneth, May 29 2024: (Start)
a(k^2) = a(k^2 - 1) for k >= 3.
a(p) = a(p - 1) + 1 for prime p. (End)
Extensions
a(18)-a(36) from Michael S. Branicky, May 25 2024
a(37)-a(38) from Michael S. Branicky, May 26 2024
a(39)-a(63) from Martin Ehrenstein, May 26 2024
a(64)-a(76) from David A. Corneth, May 29 2024, May 30 2024
Comments