cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A373346 Row sums of A373345.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 7, 5, 7, 8, 9, 12, 6, 8, 9, 10, 13, 11, 14, 15, 7, 9, 10, 11, 14, 12, 15, 16, 13, 16, 17, 18, 22, 8, 10, 11, 12, 15, 13, 16, 17, 14, 17, 18, 19, 23, 15, 18, 19, 20, 24, 21, 25, 26, 9, 11, 12, 13, 16, 14, 17, 18, 15, 18, 19, 20, 24, 16, 19, 20, 21, 25
Offset: 1

Views

Author

Paolo Xausa, Jun 01 2024

Keywords

Crossrefs

Cf. A373345.

Programs

  • Mathematica
    Join[{1}, Map[Total[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[2, 200, 2], DigitCount[#, 2, 1] <= IntegerExponent[#, 2] + 1 &]]]

A371176 Numbers k such that A000120(k) <= A001511(k).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 32, 34, 36, 40, 44, 48, 52, 56, 64, 66, 68, 72, 76, 80, 84, 88, 96, 100, 104, 112, 120, 128, 130, 132, 136, 140, 144, 148, 152, 160, 164, 168, 176, 184, 192, 196, 200, 208, 216, 224, 232, 240, 256, 258, 260, 264, 268
Offset: 1

Views

Author

Mikhail Kurkov, Mar 14 2024

Keywords

Comments

It appears that this sequence is obtained when ordering Schreier sets as explained in the Bird link. See decM(n) PARI code. - Michel Marcus, May 31 2024
That is correct since the binary representation of these numbers can be put into 1-to-1 correspondence with Schreier sets, which satisfy |X| <= min X, using the indicator function of X as the bits (starting from the right, LSB). The reason is that A000120 then computes |X| and A001511 computes min X. For example, the Schreier set X = {2, 5} can be mapped to 10010_2 = 18. - Michael S. Branicky, May 31 2024
From David A. Corneth, May 31 2024: (Start)
If k is in the sequence then so is 2*k.
a(A000045(k)) = 2^(k-2) for k >= 2. (End)
Apart from a(1), all terms are even. - Paolo Xausa, May 31 2024
Zeckendorf representation of n with rewrite 0 -> 0, {0, 1} -> 1 and k-1 zeros appended to the right side (where k is the number of ones in the given representation) and then interpreted as binary expansion is the same as a(n) (see the first formula). - Mikhail Kurkov, Oct 21 2024

Crossrefs

Programs

  • Maple
    filter:= proc(n) convert(convert(n,base,2),`+`) <= 1+padic:-ordp(n,2) end proc:
    select(filter, [1,seq(i,i=2..1000,2)]); # Robert Israel, Oct 20 2024
  • Mathematica
    Join[{1}, Select[Range[2, 1000, 2], DigitSum[#, 2] <= IntegerExponent[#, 2] + 1 &]] (* Paolo Xausa, Aug 12 2025 *)
  • PARI
    isok(n) = hammingweight(n) <= (valuation(n, 2) + 1)
    
  • PARI
    M(n) = my(list=List()); for (i=1, n, forsubset(i, s, my(bOk = if (#s && (vecmax(s) == n), #s <= vecmin(s), 0)); if (bOk, listput(list, vecsort(Vec(s),,4))););); Vec(list);
    decM(nn) = my(v = vector(nn, k, M(k)), list=List()); for (i=1, #v, my(vi = v[i]); for (j=1, #vi, my(s = vecsort(vi[j]), slist=List(), m = vecmax(s)); forstep(k=m, 1, -1, listput(slist, sign(vecsearch(s, k)))); listput(list, fromdigits(Vec(slist), 2)););); vecsort(Vec(list)); \\ Michel Marcus, May 31 2024
    
  • Python
    def ok(n): return n.bit_count() <= (-n&n).bit_length()
    print([k for k in range(1, 300) if ok(k)]) # Michael S. Branicky, May 31 2024
    
  • Python
    # Assuming the list starts with 0.
    def a():
        n = na = nb = 1
        while True:
            yield not(nb < (na - 1) << 1)
            nb, na = na, n.bit_count()
            n += 1
    aList = a(); print([n for n in range(77) if next(aList)]) # Peter Luschny, Jun 07 2024

Formula

a(n) = b(n)*A001316(b(n))/2 where b(n) = A048679(n).
a(n) = Sum_{i=0..n-1} 2^A213911(i).
a(n) = 2^(A072649(n) - 1) + [c(n) > 0]*2*a(c(n)) where c(n) = A066628(n).
a(n) = 2*a(A005206(n)) - A003849(n)*2^A007895(n-1) for n > 1 with a(1) = 1.
Conjecture: lim sup_{n -> oo} log(a(n))/log(n) = log(2) / log((1 + sqrt(5))/2) = 1.440420090412556479... = A104287. - Vaclav Kotesovec, Aug 12 2025

A373556 Irregular triangle read by rows: T(1,1) = 1 and, for n >= 2, row n lists (in decreasing order) the elements of the maximal Schreier set encoded by 2*A355489(n-1).

Original entry on oeis.org

1, 3, 2, 4, 2, 5, 2, 5, 4, 3, 6, 2, 6, 4, 3, 6, 5, 3, 7, 2, 7, 4, 3, 7, 5, 3, 7, 6, 3, 7, 6, 5, 4, 8, 2, 8, 4, 3, 8, 5, 3, 8, 6, 3, 8, 6, 5, 4, 8, 7, 3, 8, 7, 5, 4, 8, 7, 6, 4, 9, 2, 9, 4, 3, 9, 5, 3, 9, 6, 3, 9, 6, 5, 4, 9, 7, 3, 9, 7, 5, 4, 9, 7, 6, 4, 9, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Jun 09 2024

Keywords

Comments

A maximal Schreier set is a subset of the positive integers with cardinality equal to the minimum element in the set (see Chu link).
For n >= 2, each term k = 2*A355489(n-1) can be put into a one-to-one correspondence with a maximal Schreier set by interpreting the 1-based position of the ones in the binary expansion of k (where position 1 corresponds to the least significant bit) as the elements of the corresponding maximal Schreier set.
See A373558 for the elements in each set arranged in increasing order.
The number of sets having maximum element m (for m >= 2) is A000045(m-2).

Examples

			Triangle begins:
                                           Corresponding
   n  2*A355489(n-1)  bin(2*A355489(n-1))  maximal Schreier set
                                           (this sequence)
  ---------------------------------------------------------------
   1                                       {1}
   2         6                 110         {3, 2}
   3        10                1010         {4, 2}
   4        18               10010         {5, 2}
   5        28               11100         {5, 4, 3}
   6        34              100010         {6, 2}
   7        44              101100         {6, 4, 3}
   8        52              110100         {6, 5, 3}
   9        66             1000010         {7, 2}
  10        76             1001100         {7, 4, 3}
  11        84             1010100         {7, 5, 3}
  12       100             1100100         {7, 6, 3}
  13       120             1111000         {7, 6, 5, 4}
  ...
		

Crossrefs

Subsequence of A373345.
Cf. A000045, A143299 (conjectured row lengths), A355489, A373557, A373558, A373854 (row sums).

Programs

  • Mathematica
    Join[{{1}}, Map[Reverse[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[2, 500, 2], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 1 &]]]

A373557 Irregular triangle read by rows where row n lists (in decreasing order) the elements of the strong Schreier set encoded by A371176(2*n).

Original entry on oeis.org

2, 3, 4, 4, 3, 5, 5, 3, 5, 4, 6, 6, 3, 6, 4, 6, 5, 6, 5, 4, 7, 7, 3, 7, 4, 7, 5, 7, 5, 4, 7, 6, 7, 6, 4, 7, 6, 5, 8, 8, 3, 8, 4, 8, 5, 8, 5, 4, 8, 6, 8, 6, 4, 8, 6, 5, 8, 7, 8, 7, 4, 8, 7, 5, 8, 7, 6, 8, 7, 6, 5, 9, 9, 3, 9, 4, 9, 5, 9, 5, 4, 9, 6, 9, 6, 4, 9, 6, 5
Offset: 1

Views

Author

Paolo Xausa, Jun 09 2024

Keywords

Comments

A strong Schreier set is a subset of the positive integers with cardinality less than the minimum element in the set (see Chu link).
Each term k of 2*A371176 can be put into a one-to-one correspondence with a strong Schreier set by interpreting the 1-based position of the ones in the binary expansion of k (where position 1 corresponds to the least significant bit) as the elements of the corresponding strong Schreier set.
Arranging the elements in each set in decreasing order results in the sets being listed in lexicographical order (see example). Cf. A373579 for the elements arranged in increasing order.
The number of sets having maximum element m is A000045(m-1).

Examples

			Triangle begins:
                                        Corresponding
   n  A371176(2*n)  bin(A371176(2*n))   strong Schreier set
                                        (this sequence)
  ---------------------------------------------------------
   1        2               10          {2}
   2        4              100          {3}
   3        8             1000          {4}
   4       12             1100          {4, 3}
   5       16            10000          {5}       Sets are
   6       20            10100          {5, 3}    lexicographically
   7       24            11000          {5, 4}    ordered
   8       32           100000          {6}
   9       36           100100          {6, 3}
  10       40           101000          {6, 4}
  11       48           110000          {6, 5}
  12       56           111000          {6, 5, 4}
  ...
		

Crossrefs

Subsequence of A373345.
Cf. A000045, A007895 (conjectured row lengths), A371176, A373556, A373579, A373853 (row sums).

Programs

  • Mathematica
    Join[{{2}}, Map[Reverse[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[4, 400, 4], DigitCount[#, 2, 1] < IntegerExponent[#, 2] + 1 &]]]

Formula

T(n,k) = A373345(n,k) + 1.

A373347 Positive integers k such that A000120(k) > A001511(k).

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99
Offset: 1

Views

Author

Paolo Xausa, Jun 01 2024

Keywords

Comments

Numbers whose binary expansion does not encode for any Schreier set (cf. A371176 and A373345).
All odd numbers > 1 are terms.

Crossrefs

Complement of A371176.
Cf. A000120, A001511, A008466, A373345, A373360 (first differences).

Programs

  • Mathematica
    Select[Range[100], DigitSum[#, 2] > IntegerExponent[#, 2] + 1 &]
  • PARI
    isok(k) = hammingweight(k) > valuation(2*k, 2); \\ Michel Marcus, Jun 07 2024
  • Python
    def isa(n): return (n - 1).bit_count() < ((n.bit_count() - 1) << 1)
    print([n for n in range(100) if isa(n)])  # Peter Luschny, Jun 07 2024
    

Formula

a(k) = 2^(n+1) - 1; a(k+1) = 2^(n+1) + 1, where k = A008466(n+1).

A373359 Irregular triangle read by rows where row n lists (in increasing order) the elements of the Schreier set encoded by A371176(n).

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 2, 4, 3, 4, 5, 2, 5, 3, 5, 4, 5, 3, 4, 5, 6, 2, 6, 3, 6, 4, 6, 3, 4, 6, 5, 6, 3, 5, 6, 4, 5, 6, 7, 2, 7, 3, 7, 4, 7, 3, 4, 7, 5, 7, 3, 5, 7, 4, 5, 7, 6, 7, 3, 6, 7, 4, 6, 7, 5, 6, 7, 4, 5, 6, 7, 8, 2, 8, 3, 8, 4, 8, 3, 4, 8, 5, 8, 3, 5, 8, 4, 5, 8, 6, 8
Offset: 1

Views

Author

Paolo Xausa, Jun 04 2024

Keywords

Comments

See A373345 (where elements in each set are listed in decreasing order) for more information.

Examples

			Triangle begins:
                                   Corresponding Schreier
   n  A371176(n)  bin(A371176(n))  set (this sequence)
  -------------------------------------------------------
   1      1              1         {1}
   2      2             10         {2}
   3      4            100         {3}
   4      6            110         {2, 3}
   5      8           1000         {4}
   6     10           1010         {2, 4}
   7     12           1100         {3, 4}
   8     16          10000         {5}
   9     18          10010         {2, 5}
  10     20          10100         {3, 5}
  11     24          11000         {4, 5}
  12     28          11100         {3, 4, 5}
  ...
		

Crossrefs

Cf. A007895 (conjectured row lengths), A373346 (row sums), A373347.

Programs

  • Mathematica
    Join[{{1}}, Map[PositionIndex[Reverse[IntegerDigits[#, 2]]][1] &, Select[Range[2, 200, 2], DigitCount[#, 2, 1] <= IntegerExponent[#, 2] + 1 &]]]

Formula

T(n,k) = A373579(n,k) - 1.

A373889 Square array read by ascending antidiagonals: T(k,n) is the cardinality of {(E is a proper finite subset of the natural numbers) such that E = {} or w_k(E) < min(E) <= max(E) <= n}, where w_k(E) = Sum_{i in E, i <> k} 1, with n, k >= 1.

Original entry on oeis.org

2, 1, 3, 1, 2, 4, 1, 2, 4, 6, 1, 2, 4, 7, 9, 1, 2, 3, 6, 11, 14, 1, 2, 3, 6, 10, 17, 22, 1, 2, 3, 5, 10, 17, 26, 35, 1, 2, 3, 5, 10, 16, 28, 40, 56, 1, 2, 3, 5, 8, 16, 26, 45, 62, 90, 1, 2, 3, 5, 8, 16, 26, 43, 71, 97, 145, 1, 2, 3, 5, 8, 13, 26, 42, 71, 111, 153, 234
Offset: 1

Views

Author

Paolo Xausa, Jun 21 2024

Keywords

Examples

			The array begins:
  k\n|  1  2  3  4   5   6   7   8   9   10  ...
  ----------------------------------------------
   1 |  2, 3, 4, 6,  9, 14, 22, 35, 56,  90, ... = A001611 (from n = 2).
   2 |  1, 2, 4, 7, 11, 17, 26, 40, 62,  97, ...
   3 |  1, 2, 4, 6, 10, 17, 28, 45, 71, 111, ...
   4 |  1, 2, 3, 6, 10, 16, 26, 43, 71, 116, ...
   5 |  1, 2, 3, 5, 10, 16, 26, 42, 68, 111, ...
   6 |  1, 2, 3, 5,  8, 16, 26, 42, 68, 110, ...
   7 |  1, 2, 3, 5,  8, 13, 26, 42, 68, 110, ...
   8 |  1, 2, 3, 5,  8, 13, 21, 42, 68, 110, ...
   9 |  1, 2, 3, 5,  8, 13, 21, 34, 68, 110, ...
  10 |  1, 2, 3, 5,  8, 13, 21, 34, 55, 110, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    A373889[k_, n_] := Which[n < k, Fibonacci[n+1], k == 1, Fibonacci[n-k+2] + 1, True, 2*Sum[Binomial[n-k, i]*Fibonacci[k-i], {i, 0, k-2}] + 2*Binomial[n-k, k-1] + Sum[Binomial[j, n-j], {j, n-k}]];
    Table[A373889[k-n+1, n], {k, 15}, {n, k}]

Formula

T(k,n) = A000045(n-k+2) + 1, for k = 1 and n >= k;
T(k,n) = 2*(Sum_{i=0..k-2} binomial(n-k,i)*A000045(k-i)) + 2*binomial(n-k,k-1) + Sum_{j=1..n-k} binomial(j,n-j), for k >= 2 and n >= k;
T(k,n) = A000045(n+1) otherwise.
T(n,n) = 2*A000045(n).
Showing 1-7 of 7 results.