cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A373854 Row sums of A373556.

Original entry on oeis.org

1, 5, 6, 7, 12, 8, 13, 14, 9, 14, 15, 16, 22, 10, 15, 16, 17, 23, 18, 24, 25, 11, 16, 17, 18, 24, 19, 25, 26, 20, 26, 27, 28, 35, 12, 17, 18, 19, 25, 20, 26, 27, 21, 27, 28, 29, 36, 22, 28, 29, 30, 37, 31, 38, 39, 13, 18, 19, 20, 26, 21, 27, 28, 22, 28, 29, 30
Offset: 1

Views

Author

Paolo Xausa, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Map[Total[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[2, 2000, 2], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 1 &]]]

A373345 Irregular triangle read by rows where row n lists (in decreasing order) the elements of the Schreier set encoded by A371176(n).

Original entry on oeis.org

1, 2, 3, 3, 2, 4, 4, 2, 4, 3, 5, 5, 2, 5, 3, 5, 4, 5, 4, 3, 6, 6, 2, 6, 3, 6, 4, 6, 4, 3, 6, 5, 6, 5, 3, 6, 5, 4, 7, 7, 2, 7, 3, 7, 4, 7, 4, 3, 7, 5, 7, 5, 3, 7, 5, 4, 7, 6, 7, 6, 3, 7, 6, 4, 7, 6, 5, 7, 6, 5, 4, 8, 8, 2, 8, 3, 8, 4, 8, 4, 3, 8, 5, 8, 5, 3, 8, 5, 4, 8, 6
Offset: 1

Views

Author

Paolo Xausa, Jun 01 2024

Keywords

Comments

A Schreier set is a subset of the positive integers with cardinality less than or equal to the minimum element in the set.
Each term k of A371176 can be put into a one-to-one correspondence with a Schreier set by interpreting the 1-based position of the ones in the binary expansion of k (where position 1 corresponds to the least significant bit) as the elements of the corresponding Schreier set (see A371176 and Bird link).
See A373359 for the elements in each set arranged in increasing order.
The number of sets having maximum element m is A000045(m).

Examples

			Triangle begins:
                                   Corresponding Schreier
   n  A371176(n)  bin(A371176(n))  set (this sequence)
  -------------------------------------------------------
   1      1              1         {1}
   2      2             10         {2}
   3      4            100         {3}
   4      6            110         {3, 2}
   5      8           1000         {4}
   6     10           1010         {4, 2}
   7     12           1100         {4, 3}
   8     16          10000         {5}
   9     18          10010         {5, 2}
  10     20          10100         {5, 3}
  11     24          11000         {5, 4}
  12     28          11100         {5, 4, 3}
  ...
		

Crossrefs

Cf. A007895 (conjectured row lengths), A072649 (first column), A373346 (row sums), A373347.

Programs

  • Mathematica
    Join[{{1}}, Map[Reverse[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[2, 200, 2], DigitCount[#, 2, 1] <= IntegerExponent[#, 2] + 1 &]]]

Formula

T(n,k) = A373557(n,k) - 1.

A373557 Irregular triangle read by rows where row n lists (in decreasing order) the elements of the strong Schreier set encoded by A371176(2*n).

Original entry on oeis.org

2, 3, 4, 4, 3, 5, 5, 3, 5, 4, 6, 6, 3, 6, 4, 6, 5, 6, 5, 4, 7, 7, 3, 7, 4, 7, 5, 7, 5, 4, 7, 6, 7, 6, 4, 7, 6, 5, 8, 8, 3, 8, 4, 8, 5, 8, 5, 4, 8, 6, 8, 6, 4, 8, 6, 5, 8, 7, 8, 7, 4, 8, 7, 5, 8, 7, 6, 8, 7, 6, 5, 9, 9, 3, 9, 4, 9, 5, 9, 5, 4, 9, 6, 9, 6, 4, 9, 6, 5
Offset: 1

Views

Author

Paolo Xausa, Jun 09 2024

Keywords

Comments

A strong Schreier set is a subset of the positive integers with cardinality less than the minimum element in the set (see Chu link).
Each term k of 2*A371176 can be put into a one-to-one correspondence with a strong Schreier set by interpreting the 1-based position of the ones in the binary expansion of k (where position 1 corresponds to the least significant bit) as the elements of the corresponding strong Schreier set.
Arranging the elements in each set in decreasing order results in the sets being listed in lexicographical order (see example). Cf. A373579 for the elements arranged in increasing order.
The number of sets having maximum element m is A000045(m-1).

Examples

			Triangle begins:
                                        Corresponding
   n  A371176(2*n)  bin(A371176(2*n))   strong Schreier set
                                        (this sequence)
  ---------------------------------------------------------
   1        2               10          {2}
   2        4              100          {3}
   3        8             1000          {4}
   4       12             1100          {4, 3}
   5       16            10000          {5}       Sets are
   6       20            10100          {5, 3}    lexicographically
   7       24            11000          {5, 4}    ordered
   8       32           100000          {6}
   9       36           100100          {6, 3}
  10       40           101000          {6, 4}
  11       48           110000          {6, 5}
  12       56           111000          {6, 5, 4}
  ...
		

Crossrefs

Subsequence of A373345.
Cf. A000045, A007895 (conjectured row lengths), A371176, A373556, A373579, A373853 (row sums).

Programs

  • Mathematica
    Join[{{2}}, Map[Reverse[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[4, 400, 4], DigitCount[#, 2, 1] < IntegerExponent[#, 2] + 1 &]]]

Formula

T(n,k) = A373345(n,k) + 1.

A355489 Numbers k such that A000120(k) = A007814(k) + 2.

Original entry on oeis.org

3, 5, 9, 14, 17, 22, 26, 33, 38, 42, 50, 60, 65, 70, 74, 82, 92, 98, 108, 116, 129, 134, 138, 146, 156, 162, 172, 180, 194, 204, 212, 228, 248, 257, 262, 266, 274, 284, 290, 300, 308, 322, 332, 340, 356, 376, 386, 396, 404, 420, 440, 452, 472, 488, 513, 518
Offset: 1

Views

Author

Mikhail Kurkov, Jul 04 2022 [verification needed]

Keywords

Comments

Each term k, doubled, can be put into a one-to-one correspondence with a maximal Schreier set (a subset of the positive integers with cardinality equal to the minimum element in the set) by interpreting the 1-based position of the ones in the binary expansion of 2*k (where position 1 corresponds to the least significant bit) as the elements of the corresponding maximal Schreier set. See A373556 for more information. Cf. also A371176. - Paolo Xausa, Jun 13 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[500], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 2 &] (* Amiram Eldar, Jul 04 2022 *)
  • PARI
    r=quadgen(5);
    A355489_upto(nMax)={my(v1,v2,v3,v4); v1=vector(nMax,i,0); v1[1]=1; for(i=1,nMax-1,v1[i+1]=v1[i\r+1]+1); v2=vector(nMax,i,0); v2[1]=1; for(i=2,nMax,v2[i]=v1[i]-v1[i-1]); v3=vector(nMax,i,0); for(i=1,3,v3[i]=2^(i-1)); for(i=4,nMax,v3[i]=if(v2[i-1]==1,5,2*v3[i-fibonacci(v1[i-1]+1)]-if(v2[i]==1,1,0))); v4=vector(nMax,i,0); v4[1]=3; for(i=2,nMax,v4[i]=v4[i-1]+v3[i]); v4}
    
  • PARI
    isok(k) = hammingweight(k) == valuation(k, 2) + 2; \\ Michel Marcus, Jul 06 2022
    (Python 3.10+)
    from itertools import count, islice
    def A355489_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n.bit_count()==(n&-n).bit_length()+1,count(max(startvalue,1)))
    A355480_list = list(islice(A355489_gen(),30)) # Chai Wah Wu, Jul 15 2022

Formula

a(n) = a(n-1) + b(n) for n > 1 with a(1) = 3 where b(n) = {2^(n-1) if n < 4; 5 if c(n-1) = 1; otherwise 2*b(n - A000045(A072649(n-1) + 1)) - [c(n) = 1]} and where c(n) = A010056(n).
A025480(a(n)-1) = A048679(n) for n > 0.
a(A000045(n)) = 2^(n-1) + 1 for n > 1.

A373558 Irregular triangle read by rows: T(1,1) = 1 and, for n >= 2, row n lists (in increasing order) the elements of the maximal Schreier set encoded by 2*A355489(n-1).

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 5, 3, 4, 5, 2, 6, 3, 4, 6, 3, 5, 6, 2, 7, 3, 4, 7, 3, 5, 7, 3, 6, 7, 4, 5, 6, 7, 2, 8, 3, 4, 8, 3, 5, 8, 3, 6, 8, 4, 5, 6, 8, 3, 7, 8, 4, 5, 7, 8, 4, 6, 7, 8, 2, 9, 3, 4, 9, 3, 5, 9, 3, 6, 9, 4, 5, 6, 9, 3, 7, 9, 4, 5, 7, 9, 4, 6, 7, 9, 3, 8, 9
Offset: 1

Views

Author

Paolo Xausa, Jun 10 2024

Keywords

Comments

See A373556 (where elements in each set are listed in decreasing order) for more information.

Examples

			Triangle begins:
                                           Corresponding
   n  2*A355489(n-1)  bin(2*A355489(n-1))  maximal Schreier set
                                           (this sequence)
  ---------------------------------------------------------------
   1                                       {1}
   2         6                 110         {2, 3}
   3        10                1010         {2, 4}
   4        18               10010         {2, 5}
   5        28               11100         {3, 4, 4}
   6        34              100010         {2, 6}
   7        44              101100         {3, 4, 6}
   8        52              110100         {3, 5, 6}
   9        66             1000010         {2, 7}
  10        76             1001100         {3, 4, 7}
  11        84             1010100         {3, 5, 7}
  12       100             1100100         {3, 6, 7}
  13       120             1111000         {4, 5, 6, 7}
  ...
		

Crossrefs

Subsequence of A373359.
Cf. A143299 (conjectured row lengths), A355489, A373556, A373579, A373854 (row sums).

Programs

  • Mathematica
    Join[{{1}}, Map[PositionIndex[Reverse[IntegerDigits[#, 2]]][1] &, Select[Range[2, 500, 2], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 1 &]]]

A373889 Square array read by ascending antidiagonals: T(k,n) is the cardinality of {(E is a proper finite subset of the natural numbers) such that E = {} or w_k(E) < min(E) <= max(E) <= n}, where w_k(E) = Sum_{i in E, i <> k} 1, with n, k >= 1.

Original entry on oeis.org

2, 1, 3, 1, 2, 4, 1, 2, 4, 6, 1, 2, 4, 7, 9, 1, 2, 3, 6, 11, 14, 1, 2, 3, 6, 10, 17, 22, 1, 2, 3, 5, 10, 17, 26, 35, 1, 2, 3, 5, 10, 16, 28, 40, 56, 1, 2, 3, 5, 8, 16, 26, 45, 62, 90, 1, 2, 3, 5, 8, 16, 26, 43, 71, 97, 145, 1, 2, 3, 5, 8, 13, 26, 42, 71, 111, 153, 234
Offset: 1

Views

Author

Paolo Xausa, Jun 21 2024

Keywords

Examples

			The array begins:
  k\n|  1  2  3  4   5   6   7   8   9   10  ...
  ----------------------------------------------
   1 |  2, 3, 4, 6,  9, 14, 22, 35, 56,  90, ... = A001611 (from n = 2).
   2 |  1, 2, 4, 7, 11, 17, 26, 40, 62,  97, ...
   3 |  1, 2, 4, 6, 10, 17, 28, 45, 71, 111, ...
   4 |  1, 2, 3, 6, 10, 16, 26, 43, 71, 116, ...
   5 |  1, 2, 3, 5, 10, 16, 26, 42, 68, 111, ...
   6 |  1, 2, 3, 5,  8, 16, 26, 42, 68, 110, ...
   7 |  1, 2, 3, 5,  8, 13, 26, 42, 68, 110, ...
   8 |  1, 2, 3, 5,  8, 13, 21, 42, 68, 110, ...
   9 |  1, 2, 3, 5,  8, 13, 21, 34, 68, 110, ...
  10 |  1, 2, 3, 5,  8, 13, 21, 34, 55, 110, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    A373889[k_, n_] := Which[n < k, Fibonacci[n+1], k == 1, Fibonacci[n-k+2] + 1, True, 2*Sum[Binomial[n-k, i]*Fibonacci[k-i], {i, 0, k-2}] + 2*Binomial[n-k, k-1] + Sum[Binomial[j, n-j], {j, n-k}]];
    Table[A373889[k-n+1, n], {k, 15}, {n, k}]

Formula

T(k,n) = A000045(n-k+2) + 1, for k = 1 and n >= k;
T(k,n) = 2*(Sum_{i=0..k-2} binomial(n-k,i)*A000045(k-i)) + 2*binomial(n-k,k-1) + Sum_{j=1..n-k} binomial(j,n-j), for k >= 2 and n >= k;
T(k,n) = A000045(n+1) otherwise.
T(n,n) = 2*A000045(n).
Showing 1-6 of 6 results.