cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373458 Expansion of Sum_{p prime} x^p/(1 - p*x^p).

Original entry on oeis.org

0, 1, 1, 2, 1, 7, 1, 8, 9, 21, 1, 59, 1, 71, 106, 128, 1, 499, 1, 637, 778, 1035, 1, 4235, 625, 4109, 6561, 8535, 1, 39192, 1, 32768, 59170, 65553, 18026, 308219, 1, 262163, 531610, 602413, 1, 2659706, 1, 2098483, 5173594, 4194327, 1, 22737515, 117649, 18730341
Offset: 1

Views

Author

Seiichi Manyama, Jun 06 2024

Keywords

Crossrefs

Programs

  • Maple
    A373458 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isprime(d) then
                a := a+d^(n/d-1) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A373458(n),n=1..20) ; # R. J. Mathar, Jun 07 2024
  • Mathematica
    a[n_]:=Sum[Boole[PrimeQ[d]]d^(n/d-1),{d,Divisors[n]}]; Array[a,50] (* Stefano Spezia, Mar 30 2025 *)
  • PARI
    a(n) = sumdiv(n, d, isprime(d)*d^(n/d-1));

Formula

a(n) = Sum_{p|n prime} p^(n/p - 1).
If p is prime, a(p) = 1.

A382512 Expansion of Sum_{p prime} x^p / (1 - x^p)^p.

Original entry on oeis.org

0, 1, 1, 2, 1, 6, 1, 4, 6, 10, 1, 16, 1, 14, 30, 8, 1, 30, 1, 45, 56, 22, 1, 48, 70, 26, 45, 98, 1, 196, 1, 16, 132, 34, 420, 96, 1, 38, 182, 350, 1, 588, 1, 308, 615, 46, 1, 160, 924, 740, 306, 481, 1, 198, 2002, 1744, 380, 58, 1, 1605, 1, 62, 3234, 32, 3640
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[x^Prime[k]/(1 - x^Prime[k])^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

a(n) = Sum_{p|n, p prime} binomial(n/p+p-2, p-1).

A382513 Expansion of Sum_{p prime} p * x^p / (1 - p * x^p).

Original entry on oeis.org

0, 2, 3, 4, 5, 17, 7, 16, 27, 57, 11, 145, 13, 177, 368, 256, 17, 1241, 19, 1649, 2530, 2169, 23, 10657, 3125, 8361, 19683, 18785, 29, 107442, 31, 65536, 178478, 131361, 94932, 793585, 37, 524649, 1596520, 1439201, 41, 6997770, 43, 4208945, 16302032
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[Prime[k] x^Prime[k]/(1 - Prime[k] x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

a(n) = Sum_{p|n, p prime} p^(n/p).
Showing 1-3 of 3 results.