cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A037201 Differences between consecutive primes (A001223) but with repeats omitted.

Original entry on oeis.org

1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 10, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4
Offset: 1

Views

Author

Keywords

Comments

Also the run-compression of the sequence of first differences of prime numbers, where we define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1). - Gus Wiseman, Sep 16 2024

Crossrefs

This is the run-compression of A001223 = first differences of A000040.
The repeats were at positions A064113 before being omitted.
Adding up runs instead of compressing them gives A373822.
The even terms halved are A373947.
For prime-powers instead of prime numbers we have A376308.
Positions of first appearances are A376520, sorted A376521.
A003242 counts compressed compositions.
A333254 lists run-lengths of differences between consecutive primes.
A373948 encodes compression using compositions in standard order.

Programs

  • Haskell
    a037201 n = a037201_list !! (n-1)
    a037201_list = f a001223_list where
       f (x:xs@(x':_)) | x == x'   = f xs
                       | otherwise = x : f xs
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Mathematica
    Flatten[Split[Differences[Prime[Range[150]]]]/.{(k_)..}:>k] (* based on a program by Harvey P. Dale, Jun 21 2012 *)
  • PARI
    t=0;p=2;forprime(q=3,1e3,if(q-p!=t,print1(q-p", "));t=q-p;p=q) \\ Charles R Greathouse IV, Feb 27 2012

Formula

a(n>1) = 2*A373947(n-1). - Gus Wiseman, Sep 16 2024

Extensions

Offset corrected by Reinhard Zumkeller, Feb 27 2012

A376307 Run-sums of the sequence of first differences of squarefree numbers.

Original entry on oeis.org

2, 2, 2, 3, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 1, 4, 6, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 1, 4, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 6, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 6, 2, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2024

Keywords

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
  (1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with sums A376307 (this sequence).
		

Crossrefs

Run-sums of first differences of A005117.
Before taking run-sums we had A076259, ones A375927.
For the squarefree numbers themselves we have A373413.
For prime instead of squarefree numbers we have A373822, halved A373823.
For compression instead of run-sums we have A376305, ones A376342.
For run-lengths instead of run-sums we have A376306.
For prime-powers instead of squarefree numbers we have A376310.
For positions of first appearances instead of run-sums we have A376311.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[100],SquareFreeQ]]]

A376309 Run-lengths of the sequence of first differences of prime-powers.

Original entry on oeis.org

3, 1, 2, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The sequence of prime-powers (A246655) is:
  2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
  1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
with runs:
  (1,1,1),(2),(1,1),(2,2),(3),(1),(2),(4),(2,2,2,2),(1),(5),(4),(2),(4), ...
with lengths A376309 (this sequence).
		

Crossrefs

For runs of prime-powers increasing by one we have A174965.
For primes instead of prime-powers we have A333254.
For squarefree numbers instead of prime-powers we have A376306.
For compression instead of run-lengths we have A376308.
For run-sums instead of run-lengths we have A376310.
For positions of first appearances we have A376341, sorted A376340.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A024619 and A361102 list non-prime-powers, first differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373948 encodes compression using compositions in standard order.

Programs

  • Mathematica
    Length/@Split[Differences[Select[Range[100],PrimePowerQ]]]
  • PARI
    up_to = 20000;
    A376309list(up_to) = { my(v=vector(up_to), ppp=2, pd=1, d, rl=0, k=2, i=0); while(i<#v, k++; if(isprimepower(k), d = k-ppp; ppp = k; if(d == pd, rl++, i++; v[i] = rl; rl = 1; pd = d))); (v); };
    v376309 = A376309list(up_to);
    A376309(n) = v376309[n]; \\ Antti Karttunen, Jan 18 2025

Extensions

More terms from Antti Karttunen, Jan 18 2025

A376310 Run-sums of the sequence of first differences of prime-powers.

Original entry on oeis.org

3, 2, 2, 4, 3, 1, 2, 4, 8, 1, 5, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 12, 4, 2, 4, 6, 2, 10, 2, 4, 2, 24, 4, 2, 4, 6, 4, 8, 5, 1, 12, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 12, 4, 2, 4, 6, 2, 18, 4, 6, 8, 4, 8, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The sequence of prime-powers (A246655) is:
  2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
  1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
with runs:
  (1,1,1),(2),(1,1),(2,2),(3),(1),(2),(4),(2,2,2,2),(1),(5),(4),(2),(4), ...
with sums A376310 (this sequence).
		

Crossrefs

For primes instead of prime-powers we have A373822, halved A373823.
For squarefree numbers instead of prime-powers we have A376307.
For compression instead of run-sums we have A376308.
For run-lengths instead of run-sums we have A376309.
For positions of first appearances we have A376341, sorted A376340.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A024619 and A361102 list non-prime-powers, first differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373948 encodes compression using compositions in standard order.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[100],PrimePowerQ]]]

A376264 Run-sums of first differences (A078147) of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 1, 3, 4, 4, 4, 1, 2, 1, 16, 1, 3, 2, 6, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, 4, 4, 2, 2, 16, 1, 3, 1, 3, 2, 2, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, 4, 4, 1, 2, 1, 3, 1, 12, 1, 3, 4, 4, 4, 3, 1, 16, 1, 3, 4, 4, 4, 2, 3, 3, 4, 8, 1, 3, 4, 4, 3, 1, 3, 1, 8, 1, 3, 4, 1, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2024

Keywords

Comments

Does the image include all positive integers? I have only verified this up to 8.

Examples

			The sequence of nonsquarefree numbers (A013929) is:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
  (4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
with sums (A376264):
  4, 1, 3, 4, 4, 4, 1, 2, 1, 16, 1, 3, 2, 6, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, ...
		

Crossrefs

Before taking run-sums we had A078147.
For nonprime instead of nonsquarefree numbers we have A373822.
Positions of first appearances are A376265, sorted A376266.
For run-lengths instead of run-sums we have A376267.
For squarefree instead of nonsquarefree we have A376307.
For prime-powers instead of nonsquarefree numbers we have A376310.
For compression instead of run-sums we have A376312.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[1000],!SquareFreeQ[#]&]]]//Most

A376343 Positions of twos in the run-compressed (A037201) first differences (A001223) of the primes (A000040).

Original entry on oeis.org

2, 4, 6, 9, 12, 15, 18, 24, 26, 31, 33, 37, 39, 41, 44, 47, 50, 53, 57, 62, 73, 75, 81, 90, 95, 99, 102, 105, 108, 127, 129, 131, 135, 139, 156, 158, 161, 163, 167, 173, 182, 187, 190, 193, 196, 205, 210, 214, 216, 232, 235, 241, 244, 247, 254, 263, 265, 270
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of prime numbers (A000040) is:
  2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, ...
with first differences (A001223):
  1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, ...
with run-compression (A037201):
  1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, ...
with twos at (A376343):
  2, 4, 6, 9, 12, 15, 18, 24, 26, 31, 33, 37, 39, 41, 44, 47, 50, 53, 57, 62, 73, ...
		

Crossrefs

Positions of 2's in A037201.
The repeats were at positions A064113 before being omitted.
A variation for squarefree numbers is A376342.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A333254 lists run-lengths of differences between consecutive primes.

Programs

  • Mathematica
    Join@@Position[First/@Split[Differences[Select[Range[100],PrimeQ]]],2]

Formula

For just the odd primes we have a(n) - 1.

A376521 Sorted positions of first appearances in the run-compression (A037201) of the first differences (A001223) of the prime numbers (A000040).

Original entry on oeis.org

1, 2, 3, 8, 22, 28, 32, 42, 91, 141, 172, 198, 242, 259, 341, 400, 556, 692, 1119, 1737, 1779, 2072, 2101, 2913, 3126, 3204, 3246, 3457, 3598, 4294, 4383, 7596, 7651, 8284, 11986, 13729, 14220, 15101, 16273, 18217, 22303, 29523, 30243, 32236, 32808, 32820
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of prime numbers (A000040) is:
  2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, ...
with first differences (A001223):
  1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, ...
with run-compression (A037201):
  1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, ...
with first appearances at (A376521):
  1, 2, 3, 8, 22, 28, 32, 42, 91, 141, 172, 198, 242, 259, 341, 400, 556, 692, 1119, ...
		

Crossrefs

These are the sorted positions of first appearances in A037201.
For positions of twos instead of first appearances we have A376343.
The unsorted version is A376520.
A000040 lists the prime numbers, differences A001223.
A003242 counts compressed compositions, ranks A333489.
A333254 lists run-lengths of differences between consecutive primes.
A373948 encodes compression using compositions in standard order.

Programs

  • Mathematica
    q=First/@Split[Differences[Select[Range[1000],PrimeQ]]];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A373823 Half the sum of the n-th maximal run of first differences of odd primes.

Original entry on oeis.org

2, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 6, 1, 3, 2, 1, 3, 2, 3, 4, 2, 1, 2, 1, 2, 7, 2, 3, 1, 5, 1, 6, 2, 6, 1, 5, 1, 2, 1, 12, 2, 1, 2, 3, 1, 5, 9, 1, 3, 2, 1, 5, 7, 2, 1, 2, 7, 3, 5, 1, 2, 3, 4, 6, 2, 3, 4, 2, 4, 5, 1, 5, 1, 3, 2, 3, 4, 2, 1, 2, 6, 4, 2, 4, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Halved run-sums of A001223.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs:
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with halved sums a(n).
		

Crossrefs

Halved run-sums of A001223.
For run-lengths we have A333254, run-lengths of run-lengths A373821.
Multiplying by two gives A373822.
A000040 lists the primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[3,1000],PrimeQ]]]/2

A376265 Position of first appearance of n in A376264 (run-sums of first differences of nonsquarefree numbers), or 0 if there are none.

Original entry on oeis.org

2, 8, 3, 1, 6222, 14, 308540, 18
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2024

Keywords

Examples

			The sequence of nonsquarefree numbers (A013929) is:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
  (4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
with sums (A376264):
  4, 1, 3, 4, 4, 4, 1, 2, 1, 16, 1, 3, 2, 6, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, 4, ...
with first appearances at (A376265):
  2, 8, 3, 1, 6222, 14, 308540, 18, ...
		

Crossrefs

This is the position of first appearance of n in A376264.
The sorted version is A376266.
For run-lengths instead of firsts of run-sums we have A376267.
For compression instead of firsts of run-sums we have A376312.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A333254 lists run-lengths of differences between consecutive primes.
A376305 gives run-compression of first differences of squarefree numbers.
A376307 gives run-sums of first differences of squarefree numbers.

Programs

  • Mathematica
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Total/@Split[Differences[Select[Range[10000],!SquareFreeQ[#]&]]]//Most;
    Table[Position[q,k][[1,1]],{k,mnrm[q]}]

Formula

A376264(a(n)) = n.

A376266 Sorted positions of first appearances in A376264 (run-sums of first differences of nonsquarefree numbers).

Original entry on oeis.org

1, 2, 3, 8, 10, 14, 18, 53, 1437, 6222, 40874
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2024

Keywords

Examples

			The sequence of nonsquarefree numbers (A013929) is:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
  (4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
with sums (A376264):
  4, 1, 3, 4, 4, 4, 1, 2, 1, 16, 1, 3, 2, 6, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, 4, ...
with first appearances at (A376266):
  1, 2, 3, 8, 10, 14, 18, 53, 1437, 6222, 40874, ...
		

Crossrefs

These are the positions of first appearances in A376264.
The unsorted version is A376265.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A333254 lists run-lengths of differences between consecutive primes.
A376267 gives run-lengths of first differences of nonsquarefree numbers.
A376312 gives run-compression of first differences of nonsquarefree numbers.
A376305 gives run-compression of differences of squarefree numbers, ones A376342.

Programs

  • Mathematica
    q=Total/@Split[Differences[Select[Range[10000], !SquareFreeQ[#]&]]]//Most;
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]
Showing 1-10 of 11 results. Next