cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A373870 a(n) = Sum_{k=1..n} k! * k^(n-3) * |Stirling1(n,k)|.

Original entry on oeis.org

0, 1, 2, 14, 254, 9154, 552034, 50183832, 6417140232, 1098719459424, 242758470248976, 67260880064331216, 22840933997866565184, 9330599517868641290160, 4514326567036815466609008, 2553018492454631240215801344, 1668797317379516060093446975104
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, k!*k^(n-3)*abs(stirling(n, k, 1)));

Formula

E.g.f.: Sum_{k>=1} (-log(1 - k*x))^k / k^3.

A373856 a(n) = Sum_{k=1..n} k! * k^(2*n-1) * |Stirling1(n,k)|.

Original entry on oeis.org

0, 1, 17, 1652, 474770, 301474214, 357901156354, 712632435944568, 2204970751341231816, 10017874331177386762512, 63973486554110386836270096, 554598491512901862814742673168, 6344773703149123365957506715989568, 93563015826037060521986513216617599504
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=13; Range[0,nmax]!CoefficientList[Series[Sum[(-Log[1 - k^2*x])^k / k,{k,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Jun 19 2024 *)
  • PARI
    a(n) = sum(k=1, n, k!*k^(2*n-1)*abs(stirling(n, k, 1)));

Formula

E.g.f.: Sum_{k>=1} (-log(1 - k^2*x))^k / k.

A373857 a(n) = Sum_{k=1..n} k! * k^(n-1) * Stirling1(n,k).

Original entry on oeis.org

0, 1, 3, 32, 734, 28994, 1752046, 150262104, 17356844088, 2597710341600, 488957612319984, 113044488306692304, 31490845086661001664, 10403092187976909854640, 4021236906890850070201488, 1798052050351216209712206336, 920859156623446912386646303104
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=16; Range[0,nmax]!CoefficientList[Series[Sum[(Log[1 + k*x])^k / k,{k,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Jun 19 2024 *)
  • PARI
    a(n) = sum(k=1, n, k!*k^(n-1)*stirling(n, k, 1));

Formula

E.g.f.: Sum_{k>=1} log(1 + k*x)^k / k.

A373875 a(n) = Sum_{k=1..n} k! * k^(n-2) * |Stirling1(n,k)|.

Original entry on oeis.org

0, 1, 3, 32, 802, 36854, 2698598, 288450168, 42388536888, 8198703649296, 2019226648157472, 616991110153816848, 229048514514263311008, 101540936651344709359632, 52984383824921037875927760, 32145394332240602286960456192
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, k!*k^(n-2)*abs(stirling(n, k, 1)));

Formula

E.g.f.: Sum_{k>=1} (-log(1 - k*x))^k / k^2.
Showing 1-4 of 4 results.