cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049661 a(n) = (Fibonacci(6*n+1) - 1)/4.

Original entry on oeis.org

0, 3, 58, 1045, 18756, 336567, 6039454, 108373609, 1944685512, 34895965611, 626182695490, 11236392553213, 201628883262348, 3618083506169055, 64923874227780646, 1165011652593882577, 20905285872462105744
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(Fibonacci(6*n+1)-1)/4: n in [0..20] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    Table[(Fibonacci[6n+1]-1)/4,{n,0,20}] (* or *) LinearRecurrence[ {19,-19,1},{0,3,58},20] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    a(n)=fibonacci(6*n+1)>>2 \\ Charles R Greathouse IV, Aug 23 2011

Formula

From R. J. Mathar, Nov 04 2008: (Start)
G.f.: x*(3+x)/((1-x)*(1-18*x+x^2)).
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). (End)
a(n) = (-1/4+1/40*(9+4*sqrt(5))^(-n)*(5-sqrt(5)+(5+sqrt(5))*(9+4*sqrt(5))^(2*n))). - Colin Barker, Mar 03 2016
Product_{n>=1} (1 - 1/a(n)) = (sqrt(5)+3)/8 = phi^2/4 = cos(Pi/5)^2 = A019863^2 = (A374149 + 1)/10. - Amiram Eldar, Nov 28 2024

A374883 Decimal expansion of phi*(2*phi + 1) (i.e., (7 + 3*sqrt(5))/2), where phi is the golden ratio.

Original entry on oeis.org

6, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2
Offset: 1

Views

Author

Marco Ripà, Jul 22 2024

Keywords

Comments

The author conjectures that this is the minimum volume of an axis-aligned bounding box which includes the shortest minimum-link circuit joining all the vertices of the cube {0,1}^3 (i.e., the closed polygonal chains consisting of exactly 6 edges visiting all the points of the set {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}).
In detail, such a circuit of 6 links is given by (1/2,1+phi,1/2)-((1-phi)/2,0,(1+phi)/2)-((phi+1)/2,0, (1-phi)/2)-(1/2,1+phi,1/2)-((phi+1)/2,0,(phi+1)/2)-((1-phi)/2,0,(1-phi)/2(1/2,1+phi,1/2), where phi := (1+sqrt(5))/2 (see A001622).
Then, phi*(2*phi + 1) = phi^2*(phi + 1) since phi - 1 = 1/phi.

Examples

			6.8541019662496845446137605030969...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.

Crossrefs

Programs

  • Mathematica
    RealDigits[3*GoldenRatio + 2, 10, 120][[1]] (* Amiram Eldar, Jul 23 2024 *)

Formula

Equals (7 + 3*sqrt(5))/2.
Equals phi^2*(phi + 1), where phi = (1 + sqrt(5))/2.
Equals A104457^2 = 2*A205769. - Hugo Pfoertner, Jul 22 2024
Equals A090550 + 1 = A134973 + 5. - Amiram Eldar, Jul 23 2024
Equals phi^4. - Stefano Spezia, May 28 2025

A375803 a(n) = Fibonacci(n-1) * Fibonacci(n+1) * Fibonacci(2*n-1) * Fibonacci(2*n+1).

Original entry on oeis.org

0, 20, 195, 4420, 72624, 1347905, 23877840, 430583140, 7712000835, 138485573876, 2484341814240, 44584372180225, 800002107309600, 14355674602647860, 257600625681170499, 4622465972012379940, 82946715695078486160, 1488418904383171787585, 26708590219470770907120
Offset: 1

Views

Author

Amiram Eldar, Aug 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Fibonacci[n-1] * Fibonacci[n+1] * Fibonacci[2*n-1] * Fibonacci[2*n+1]; Array[a, 20]
  • PARI
    a(n) = fibonacci(n-1) * fibonacci(n+1) * fibonacci(2*n-1) * fibonacci(2*n+1);

Formula

a(n) = A059929(n-1) * A059929(2*n-1) = A059929(n-1) * A064170(n+2).
Sum_{n>=2} (-1)^n/a(n) = (5*sqrt(5) - 11)/4 = A374149 - 11/2 = 10 * A134944 - 4 (Ohtskua, 2024).
G.f.: -x^2*(-20+65*x+195*x^2-84*x^3-13*x^4+x^5) / ( (1+x)*(x^2-3*x+1)*(x^2-18*x+1)*(x^2+7*x+1) ). - R. J. Mathar, Aug 30 2024
Showing 1-3 of 3 results.