cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024

A139030 Real part of (4 + 3i)^n.

Original entry on oeis.org

1, 4, 7, -44, -527, -3116, -11753, -16124, 164833, 1721764, 9653287, 34182196, 32125393, -597551756, -5583548873, -29729597084, -98248054847, -42744511676, 2114245277767, 17982575014036, 91004468168113, 278471369994004, -47340744250793, -7340510203856444, -57540563024581727
Offset: 0

Views

Author

Gary W. Adamson, Apr 06 2008

Keywords

Comments

sqrt (a(n)^2 + (A139031(n))^2) = 5^n. Example: a(3) = -44, A139031(3) = 117. Sqrt (-44^2 + 117^2) = 5^3.
If a prime p divides a term, then the indices n such that p divides a(n) comprise an arithmetic sequence; e.g., 11 divides a(6n+3) for n >= 0; 31 divides a(8n+4) for n>= 0. See the Renault paper in Links. - Clark Kimberling, Oct 02 2024

Examples

			a(5) = -3116 since (4 + 3i)^5 = (-3116 - 237i) where -237 = A139031(5).
		

Crossrefs

Programs

  • Maple
    a:= n-> Re((4+3*I)^n):
    seq(a(n), n=0..24);  # Alois P. Heinz, Oct 15 2024
  • Mathematica
    Re[(4+3I)^Range[40]] (* or *) LinearRecurrence[{8,-25},{4,7},40] (* Harvey P. Dale, Nov 09 2011 *)
    A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2 b c)];
    {a, b, c} = {3, 4, 5};
    Table[TrigExpand[5^n Cos[n (A[b, c, a] - A[c, a, b])]], {n, 0, 50}] (* Clark Kimberling, Oct 02 2024 *)

Formula

Real part of (4 + 3i)^n. Term (1,1) of [4,-3; 3,4]^n. a(n), n>=2 = 8*a(n-1) - 25*a(n-2), given a(0) = 1, a(1) = 4. Odd-indexed terms of A066770 interleaved with even-indexed terms of A066771, irrespective of sign.
G.f.: (1-4*x) / ( 1-8*x+25*x^2 ). - R. J. Mathar, Feb 05 2011
a(n) = 5^n * cos(nB-nC), where B is the angle opposite side CA and C is the angle opposite side AB in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle. - Clark Kimberling, Oct 02 2024
E.g.f.: exp(4*x)*cos(3*x). - Stefano Spezia, Oct 03 2024

Extensions

More terms from Harvey P. Dale, Nov 09 2011
a(0)=1 prepended by Alois P. Heinz, Oct 15 2024

A376283 a(n) = (40)^n * cos(nB), where B is the angle opposite side CA in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle.

Original entry on oeis.org

1, 24, -448, -59904, -2158592, -7766016, 3080978432, 160312590336, 2765438844928, -123759079981056, -10365137990975488, -299512095597133824, 2207640196898357248, 585186082406535266304, 24556707640476321185792, 242424234892406990831616
Offset: 0

Views

Author

Clark Kimberling, Oct 02 2024

Keywords

Comments

If a prime p divides a term, then the indices n such that p divides a(n) comprise an arithmetic sequence; e.g., 7 divides a(4n+2) for n >= 0; 17 divides a(8n+4) for n>= 0. See the Renault paper in References.

References

  • Marc Renault, "The Period, Rank, and Order of the (a,b)-Fibonacci Sequence mod m", Math. Mag. 86 (2013) 372 - 380.

Crossrefs

Programs

  • Mathematica
    (*Program 1*)
    A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2  b  c)];
    Table[TrigExpand[(20)^n  Cos[n  A[4, 5, 3]]], {n, 0, 30}]
    (*Program 2*)
    LinearRecurrence[{48, -1600}, {1, 24}, 30]

Formula

a(n) = (40)^n * cos(nB), where B is the angle opposite side CA in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle.
a(n) = 48 a(n-1) - 1600 a(n-2), where a(0) = 1, a(1) = 24.
From Stefano Spezia, Oct 03 2024: (Start)
G.f.: (1 - 24*x)/(1 - 48*x + 1600*x^2).
E.g.f.: exp(24*x)*cos(32*x). (End)

A376285 a(n) = 20^n * cos(n*A), where A is the angle opposite side BC in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle.

Original entry on oeis.org

1, 16, 112, -2816, -134912, -3190784, -48140288, -264175616, 10802495488, 451350102016, 10122205069312, 143370521411584, 538974657445888, -40101019526365184, -1498822487822041088, -31921911799759241216, -421972182463479283712, -734345118927640592384
Offset: 0

Views

Author

Clark Kimberling, Oct 03 2024

Keywords

Comments

If a prime p divides a term, then the indices n such that p divides a(n) comprise an arithmetic sequence; e.g., 7 divides a(4*n+2) for n >= 0; 17 divides a(8*n+3) for n >= 0. See the Renault paper in References.

References

  • Marc Renault, "The Period, Rank, and Order of the (a,b)-Fibonacci Sequence mod m", Math. Mag. 86 (2013) 372 - 380.

Crossrefs

Programs

  • Mathematica
    (*Program 1*)
    A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2  b  c)];
    Table[TrigExpand[(20)^n  Cos[n  A[3, 4, 5]]], {n, 0, 30}]
    (*Program 2*)
    LinearRecurrence[{32, -400}, {1, 16}, 30]

Formula

a(n) = 20^n * cos(n*A), where A is the angle opposite side BC in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle.
a(n) = 32*a(n-1) - 400*a(n-2), where a(0) = 1, a(1) = 16.
From Stefano Spezia, Oct 03 2024: (Start)
G.f.: (1 - 16*x)/(1 - 32*x + 400*x^2).
E.g.f.: exp(16*x)*cos(12*x). (End)
Showing 1-4 of 4 results.