Original entry on oeis.org
0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0
a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
-
a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 02 2024
-
s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
Table[u[n], {n, 0, 20}]
-
a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024
A139030
Real part of (4 + 3i)^n.
Original entry on oeis.org
1, 4, 7, -44, -527, -3116, -11753, -16124, 164833, 1721764, 9653287, 34182196, 32125393, -597551756, -5583548873, -29729597084, -98248054847, -42744511676, 2114245277767, 17982575014036, 91004468168113, 278471369994004, -47340744250793, -7340510203856444, -57540563024581727
Offset: 0
a(5) = -3116 since (4 + 3i)^5 = (-3116 - 237i) where -237 = A139031(5).
-
a:= n-> Re((4+3*I)^n):
seq(a(n), n=0..24); # Alois P. Heinz, Oct 15 2024
-
Re[(4+3I)^Range[40]] (* or *) LinearRecurrence[{8,-25},{4,7},40] (* Harvey P. Dale, Nov 09 2011 *)
A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2 b c)];
{a, b, c} = {3, 4, 5};
Table[TrigExpand[5^n Cos[n (A[b, c, a] - A[c, a, b])]], {n, 0, 50}] (* Clark Kimberling, Oct 02 2024 *)
A376283
a(n) = (40)^n * cos(nB), where B is the angle opposite side CA in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle.
Original entry on oeis.org
1, 24, -448, -59904, -2158592, -7766016, 3080978432, 160312590336, 2765438844928, -123759079981056, -10365137990975488, -299512095597133824, 2207640196898357248, 585186082406535266304, 24556707640476321185792, 242424234892406990831616
Offset: 0
- Marc Renault, "The Period, Rank, and Order of the (a,b)-Fibonacci Sequence mod m", Math. Mag. 86 (2013) 372 - 380.
-
(*Program 1*)
A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2 b c)];
Table[TrigExpand[(20)^n Cos[n A[4, 5, 3]]], {n, 0, 30}]
(*Program 2*)
LinearRecurrence[{48, -1600}, {1, 24}, 30]
A376285
a(n) = 20^n * cos(n*A), where A is the angle opposite side BC in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle.
Original entry on oeis.org
1, 16, 112, -2816, -134912, -3190784, -48140288, -264175616, 10802495488, 451350102016, 10122205069312, 143370521411584, 538974657445888, -40101019526365184, -1498822487822041088, -31921911799759241216, -421972182463479283712, -734345118927640592384
Offset: 0
- Marc Renault, "The Period, Rank, and Order of the (a,b)-Fibonacci Sequence mod m", Math. Mag. 86 (2013) 372 - 380.
-
(*Program 1*)
A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2 b c)];
Table[TrigExpand[(20)^n Cos[n A[3, 4, 5]]], {n, 0, 30}]
(*Program 2*)
LinearRecurrence[{32, -400}, {1, 16}, 30]
Showing 1-4 of 4 results.
Comments