cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376386 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x))^3 ).

Original entry on oeis.org

1, 0, 6, 9, 600, 3510, 204372, 2617020, 152727936, 3319236144, 203151929040, 6485780434320, 425284393933440, 18190896271479360, 1291781802823916544, 69545182272420909600, 5374429456543444177920, 348502600060029871948800, 29344904433432469953368064
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x))^3)/x))
    
  • PARI
    a(n) = 3*n!*sum(k=0, n\2, (3*n+k+2)!*abs(stirling(n-k, k, 1))/(n-k)!)/(3*n+3)!;

Formula

E.g.f. A(x) satisfies A(x) = 1/(1 + x*A(x) * log(1 - x*A(x)))^3.
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A371232.
a(n) = (3 * n!/(3*n+3)!) * Sum_{k=0..floor(n/2)} (3*n+k+2)! * |Stirling1(n-k,k)|/(n-k)!.

A375671 Expansion of e.g.f. 1 / (1 + x * log(1 - x))^2.

Original entry on oeis.org

1, 0, 4, 6, 88, 420, 5148, 44520, 587424, 7203168, 109106640, 1689621120, 29620245312, 546547098240, 10989238893696, 233884517368320, 5324618721070080, 128058198711690240, 3260308438558826496, 87336328336058603520, 2459915920512955929600
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x))^2))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (k+1)!*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052830.
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)! * |Stirling1(n-k,k)|/(n-k)!.

A377683 Expansion of e.g.f. (1 - x * log(1 - x))^3.

Original entry on oeis.org

1, 0, 6, 9, 96, 450, 3132, 22680, 179904, 1578528, 15282000, 162304560, 1879227072, 23579281440, 318874800384, 4625170411680, 71640771563520, 1180394962790400, 20616532017767424, 380509312545031680, 7400308896979660800, 151271976281858611200, 3242509236999683481600
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, k!*binomial(3, k)*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k! * binomial(3,k) * |Stirling1(n-k,k)|/(n-k)!.
Showing 1-3 of 3 results.