cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375946 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(4/3).

Original entry on oeis.org

1, 4, 32, 372, 5652, 105936, 2360712, 60956472, 1789413864, 58850914752, 2143354213728, 85629122177760, 3723269780412000, 175035687610956480, 8846458578801144000, 478330017277120767360, 27551501517174431852160, 1684176901225092936990720
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=17; CoefficientList[Series[1 / (1 + 3 * Log[1-x])^(4/3),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
  • PARI
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k+1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} A007559(k+1) * |Stirling1(n,k)|.

A375988 Expansion of e.g.f. (1 + 3 * log(1 - x))^(4/3).

Original entry on oeis.org

1, -4, 0, 12, 108, 1104, 14136, 225768, 4386168, 100885248, 2683789344, 81047258208, 2737919298528, 102266990392896, 4184016413001408, 186047367206499072, 8933002185371731200, 460580247564830138880, 25378595790818821816320, 1488230641037882346324480
Offset: 0

Views

Author

Seiichi Manyama, Sep 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 3*j-4)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (3*j-4)) * |Stirling1(n,k)|.

A375989 Expansion of e.g.f. (1 + 3 * log(1 - x))^(5/3).

Original entry on oeis.org

1, -5, 5, 30, 180, 1410, 14790, 203880, 3559560, 75659760, 1893764160, 54430097760, 1763357958000, 63501756552720, 2514747808468080, 108572621062573440, 5074353268651935360, 255201626973301102080, 13740802156877800538880, 788580746923723472839680
Offset: 0

Views

Author

Seiichi Manyama, Sep 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 3*j-5)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (3*j-5)) * |Stirling1(n,k)|.
Showing 1-3 of 3 results.