cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375959 Partial products of A006257.

Original entry on oeis.org

1, 1, 3, 3, 9, 45, 315, 315, 945, 4725, 33075, 297675, 3274425, 42567525, 638512875, 638512875, 1915538625, 9577693125, 67043851875, 603394666875, 6637341335625, 86285437363125, 1294281560446875, 22002786527596875, 418052944024340625, 8779111824511153125, 201919571963756521875
Offset: 1

Views

Author

DarĂ­o Clavijo, Sep 03 2024

Keywords

Comments

Also the determinant of the n X n lower triangular matrix where row j is the Eytzinger array permutation of {1,2,...,j} (A375825), and similarly any lower triangular matrices with A006257 on their diagonal.
a(n) = a(n-1) iff n = 2^k, since those n are where A006257(n) = 1. - Stefano Spezia, Sep 06 2024

Examples

			For n = 9, a(9) = 1*1*3*1*3*5*7*1*3 = 945.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[Flatten[Table[Range[1, 2^n - 1, 2], {n, 1, 6}]][[i]],{i,n}],{n,1,27}] (* James C. McMahon, Sep 19 2024 *)
  • PARI
    a(n) = prod(k=1, n, 2*k-2^logint(2*k, 2)+1); \\ Michel Marcus, Sep 06 2024
  • Python
    from sympy import prod
    a = lambda n: prod(((j-(1 << j.bit_length()-1))<<1)+1 for j in range(1, n+1))
    print([a(n) for n in range(1, 28)])
    

Formula

a(n) = Product_{k=1..n} A006257(k).