A375959 Partial products of A006257.
1, 1, 3, 3, 9, 45, 315, 315, 945, 4725, 33075, 297675, 3274425, 42567525, 638512875, 638512875, 1915538625, 9577693125, 67043851875, 603394666875, 6637341335625, 86285437363125, 1294281560446875, 22002786527596875, 418052944024340625, 8779111824511153125, 201919571963756521875
Offset: 1
Examples
For n = 9, a(9) = 1*1*3*1*3*5*7*1*3 = 945.
Links
- Sergey Slotin, Eytzinger binary search.
Programs
-
Mathematica
Table[Product[Flatten[Table[Range[1, 2^n - 1, 2], {n, 1, 6}]][[i]],{i,n}],{n,1,27}] (* James C. McMahon, Sep 19 2024 *)
-
PARI
a(n) = prod(k=1, n, 2*k-2^logint(2*k, 2)+1); \\ Michel Marcus, Sep 06 2024
-
Python
from sympy import prod a = lambda n: prod(((j-(1 << j.bit_length()-1))<<1)+1 for j in range(1, n+1)) print([a(n) for n in range(1, 28)])
Formula
a(n) = Product_{k=1..n} A006257(k).
Comments