A376222
Numbers k such that Sum_{i=1..q-1} d(i)^i is prime, where d(1)
4, 21, 27, 39, 57, 77, 183, 189, 203, 205, 219, 237, 253, 371, 387, 391, 417, 489, 565, 611, 655, 667, 669, 675, 687, 749, 767, 799, 831, 849, 897, 921, 955, 1007, 1047, 1135, 1189, 1207, 1349, 1371, 1379, 1407, 1421, 1461, 1469, 1497, 1513, 1569, 1633, 1643, 1659
Offset: 1
Keywords
Examples
39 is a term because the 3 first divisors of 39 are {1,3,13} and 1^1 + 3^2 + 13^3 = 2207 is prime. 189 is a term since the 7 first divisors of 189 are {1, 3, 7, 9, 21, 27, 63} and 1^1+3^2+7^3+9^4+21^5+27^6+63^7 = 3939372150671 is prime.
Programs
-
Maple
with(numtheory):nn:=1700: for n from 1 to nn do: d:=divisors(n):n0:=nops(d):s:=sum(âd[k]^kâ, âkâ=1..n0-1): if isprime(s) then printf(`%d,`,n): else fi: od:
-
Mathematica
Select[Range[1700],PrimeQ[Sum[Part[Divisors[#],i]^i,{i,DivisorSigma[0,#]-1}]] &] (* Stefano Spezia, Sep 16 2024 *)
-
PARI
isok(k) = my(d=divisors(k)); isprime(sum(j=1, #d-1, d[j]^j)); \\ Michel Marcus, Sep 16 2024
Comments