cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376222 Numbers k such that Sum_{i=1..q-1} d(i)^i is prime, where d(1)

Original entry on oeis.org

4, 21, 27, 39, 57, 77, 183, 189, 203, 205, 219, 237, 253, 371, 387, 391, 417, 489, 565, 611, 655, 667, 669, 675, 687, 749, 767, 799, 831, 849, 897, 921, 955, 1007, 1047, 1135, 1189, 1207, 1349, 1371, 1379, 1407, 1421, 1461, 1469, 1497, 1513, 1569, 1633, 1643, 1659
Offset: 1

Views

Author

Michel Lagneau, Sep 16 2024

Keywords

Comments

The corresponding primes are in A376223.

Examples

			39 is a term because the 3 first divisors of 39 are {1,3,13} and 1^1 + 3^2 + 13^3 = 2207 is prime.
189 is a term since the 7 first divisors of 189 are {1, 3, 7, 9, 21, 27, 63} and 1^1+3^2+7^3+9^4+21^5+27^6+63^7 = 3939372150671 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=1700:
    for n from 1 to nn do:
    d:=divisors(n):n0:=nops(d):s:=sum(‘d[k]^k’, ‘k’=1..n0-1):
       if isprime(s)
        then
         printf(`%d,`,n):
        else
       fi:
    od:
  • Mathematica
    Select[Range[1700],PrimeQ[Sum[Part[Divisors[#],i]^i,{i,DivisorSigma[0,#]-1}]] &] (* Stefano Spezia, Sep 16 2024 *)
  • PARI
    isok(k) = my(d=divisors(k)); isprime(sum(j=1, #d-1, d[j]^j)); \\ Michel Marcus, Sep 16 2024