A377360
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^2.
Original entry on oeis.org
1, 2, 12, 130, 2082, 44488, 1192964, 38557860, 1459988440, 63414711072, 3108861424032, 169829819311392, 10230860299538400, 673850170929176928, 48176129912775680160, 3715759452364764485280, 307545698210584533055488, 27190399275422185989742080, 2557448587458299889542868480
Offset: 0
-
nmax = 20; CoefficientList[1/x * InverseSeries[Series[x/(1 - Log[1 - x])^2, {x, 0, nmax + 1}], x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 27 2025 *)
-
a(n) = 2*(2*n+1)!*sum(k=0, n, abs(stirling(n, k, 1))/(2*n-k+2)!);
A377427
E.g.f. satisfies A(x) = 1/(1 + log(1 - x*A(x)^2))^2.
Original entry on oeis.org
1, 2, 24, 574, 20950, 1034588, 64592556, 4881978904, 433485612000, 44236604978112, 5102049359506176, 656355318561027072, 93184708368255490896, 14472905373087118415040, 2441090221004851173202080, 444344375119629711627403776, 86822659466273927313499224192
Offset: 0
-
a(n) = 2*sum(k=0, n, (4*n+k+1)!*abs(stirling(n, k, 1)))/(4*n+2)!;
A377429
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + log(1-x))^4 ).
Original entry on oeis.org
1, 4, 56, 1436, 54540, 2763696, 175688744, 13457185080, 1207241712536, 124205544781728, 14420516981211360, 1865347268407271040, 266056506383725529568, 41485848013549310521536, 7021170794004780911946048, 1281852242007649764308226240, 251124461130948243588667169280
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+log(1-x))^4)/x))
-
a(n) = 4*sum(k=0, n, (4*n+k+3)!*abs(stirling(n, k, 1)))/(4*n+4)!;
A376436
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x))^2 ).
Original entry on oeis.org
1, 0, 0, 12, 24, 80, 11160, 87696, 715680, 62337600, 1065980160, 15842534400, 1109943362880, 31591940440320, 731706348941568, 46767587926752000, 1889337264901632000, 61735665488234250240, 3896148715287564902400, 201584132714100384460800, 8661099107269708639948800, 567405718655558932535500800
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x))^2)/x))
-
a(n) = 2*n!*sum(k=0, n\3, (2*n+k+1)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(2*n+2)!;
Showing 1-4 of 4 results.