cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A383597 Expansion of 1/( (1-x)^2 * (1-10*x) )^(1/3).

Original entry on oeis.org

1, 4, 25, 190, 1570, 13552, 120178, 1085620, 9940345, 91962460, 857750233, 8053389142, 76026759760, 721017894640, 6864725124520, 65578937628304, 628320730656586, 6035594205744520, 58110220504754650, 560624083417180300, 5418599393597801020, 52459116546784350880
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    I:=[4,25]; [1] cat [n le 2 select I[n] else ((11*n-7)*Self(n-1) - 10*(n-1) *Self(n-2))/n : n in [1..30]]; // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[(-9)^k *Binomial[-1/3,k]* Binomial[n, k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-9)^k*binomial(-1/3, k)*binomial(n, k));
    

Formula

a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n,k).
n*a(n) = (11*n-7)*a(n-1) - 10*(n-1)*a(n-2) for n > 1.
a(n) ~ 10^(n + 2/3) / (Gamma(1/3) * 3^(4/3) * n^(2/3)). - Vaclav Kotesovec, May 02 2025
a(n) = hypergeom([1/3, -n], [1], -9). - Stefano Spezia, May 04 2025

A376806 Expansion of 1/((1 - x^3)^3 - 9*x)^(1/3).

Original entry on oeis.org

1, 3, 18, 127, 957, 7497, 60229, 492483, 4079826, 34138873, 287946771, 2444458878, 20863127251, 178868929074, 1539439262406, 13293346718161, 115123998810525, 999553370761017, 8698196146639573, 75845560146124527, 662551474429229571, 5797239969198654748
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x^3)^3-9*x)^(1/3))

Formula

a(n) = Sum_{k=0..floor(n/3)} (-9)^(n-3*k) * binomial(-1/3,n-3*k) * binomial(3*n-8*k,k).

A376805 Expansion of 1/((1 - x^2)^3 - 9*x)^(1/3).

Original entry on oeis.org

1, 3, 19, 138, 1072, 8661, 71758, 605094, 5169286, 44605527, 387969346, 3396331158, 29891385937, 264264469542, 2345319267553, 20883723678234, 186497307222706, 1669724703219384, 14983025158691938, 134719748524295094, 1213531265862339751
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x^2)^3-9*x)^(1/3))

Formula

a(n) = Sum_{k=0..floor(n/2)} (-9)^(n-2*k) * binomial(-1/3,n-2*k) * binomial(3*n-5*k,k).

A376803 Expansion of 1/((1 - x)^3 - 9*x^2)^(1/3).

Original entry on oeis.org

1, 1, 4, 13, 49, 187, 736, 2941, 11908, 48682, 200584, 831712, 3466867, 14515411, 61005634, 257238349, 1087792225, 4611606373, 19594364860, 83421726877, 355801896895, 1519998686401, 6503081167372, 27859917707863, 119502218725576, 513173645933326
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)^3-9*x^2)^(1/3))

Formula

a(n) = Sum_{k=0..floor(n/2)} (-9)^k * binomial(-1/3,k) * binomial(n+k,n-2*k).

A376804 Expansion of 1/((1 - x)^3 - 9*x^3)^(1/3).

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 79, 232, 673, 1891, 5401, 15742, 45958, 134122, 393394, 1159432, 3425101, 10137985, 30079405, 89437960, 266389615, 794667325, 2374097485, 7102303240, 21272892055, 63788000461, 191471030791, 575287348546, 1730027151334, 5206918491298
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)^3-9*x^3)^(1/3))

Formula

a(n) = Sum_{k=0..floor(n/3)} (-9)^k * binomial(-1/3,k) * binomial(n,n-3*k).
Showing 1-5 of 5 results.